首页> 中文期刊> 《能源化学:英文版》 >Numerical study on soot removal in partial oxidation of methane to syngas reactors

Numerical study on soot removal in partial oxidation of methane to syngas reactors

         

摘要

The serious carbon deposition existing in catalytic partial oxidation of methane(CPOM) to syngas process is one of the key problems that impede its industrialization. In this study, 3-dimensional unsteady numerical simulations of the soot formation and oxidation in oxidation section in a heat coupling reactor were carried out by computational fluid dynamics(CFD) approach incorporating the Moss-Brookes model for soot formation. The model has been validated and proven to be in good agreement with experiment results. Effects of nozzle type,nozzle convergence angle, channel spacing, number of channels, radius/height ratio, oxygen/carbon ratio, preheat temperature and additional introduction of steam on the soot formation were simulated. Results show that the soot formation in oxidation section of the heat coupling reactor depends on both nozzle structures and operation conditions, and the soot concentration can be greatly reduced by optimization with the maximum mass fraction of soot inside the oxidation reactor from 2.28% to 0.0501%, and so that the soot mass fraction at the exit reduces from0.74% to 0.03%.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号