首页> 中文期刊> 《东华大学学报:英文版》 >Performance Degradation Alarming M ethod Based on Local Flexural Stiffness Identification for Beams

Performance Degradation Alarming M ethod Based on Local Flexural Stiffness Identification for Beams

         

摘要

Uncertain local flexural stiffness is recognized as one of the main barriers against the application of existing damage detection and performance degradation alarming techniques to real-world beams.Therefore,damage localization of beams with original uncertainty has been investigated to ensure their safety.For the beam before serving,it should be simply supported and subject to static load.Based on the concept of suppositional partition,a new loading pattern and mid-span displacement data processing method has been proposed.Actual local flexural stiffness value of each partition can be obtained by solving a set of linear equations.The obtained stiffness data can be used to establish the finite element model of beams.Subsequently,dynamic excitation and mode identification should be carried out for the beam in service.Mode shape curvature index is employed to detect the position of damage.It was validated by example that actual damage and original uncertainty of local flexural stiffness can be differentiated by this new method effectively.The combination of static load and dynamic excitation can keep the serviceability of beam.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号