首页> 中文期刊> 《硅酸盐学报(英文版)》 >Numerical Optimization of Tunnel-recombination Junction and Optical Absorption Properties of a-Si:H/a-SiGe:H Double-junction Solar Cell

Numerical Optimization of Tunnel-recombination Junction and Optical Absorption Properties of a-Si:H/a-SiGe:H Double-junction Solar Cell

         

摘要

The tunnel-recombination junction (TRJ) and optical absorption properties of a-Si:H/a-SiGe:H dou-ble-junction solar cell were calculated by means of one dimensional simulator named AMPS-1D at the radiation of AM1.5G with a power density of 100 mW/cm2. Since the TRJ is the core component of the tandem solar cell, the optical absorption of the sub-cells and the electronic transport properties at the interface of the sub-cells are affected by the thickness and doping concentration of the TRJ. As a result, the TRJ parameters were optimized. The numerical results indicate that the maximum conversion efficiency (Ef) of 9.862% can be obtained when the thickness and doping con-centration of the TRJ are 10 nm and 5′1019 cm–3, respectively. Based on the analysis of the contour map of short circuit current density, the optimal current matching can be achieved for 130 nm-thick topi-layer and 250 nm-thick bottom i-layer. In addition, four kinds of TRJ structures were also simulated for the comparison purpose. According to the cal-culated resistivity and band structures of the four TRJs, the efficiency of the solar cell withn-typeμc-Si:H layer and p-type a-Si:H layer in TRJ structure is greater than that with other TRJ structures. It is assumed that the effect of the band offset that results in the formation of triangular barrier and backscattering behavior at the edge of the TRJ could be responsible to this phenomenon.

著录项

  • 来源
    《硅酸盐学报(英文版)》 |2015年第1期|1-11|共11页
  • 作者

  • 作者单位
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    机译:a-Si:H / a-Si Ge:H串联太阳能电池;隧道复合结;电流匹配;带隙;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号