首页> 中文期刊> 《中国邮电高校学报:英文版》 >Underflow concentration prediction model of deep-cone thickener based on data-driven

Underflow concentration prediction model of deep-cone thickener based on data-driven

         

摘要

The underflow concentration prediction of deep-cone thickener is a difficult problem in paste filling. The existing prediction model only determines the influence of some parameters on the underflow concentration, but lacks a prediction model that comprehensively considers the thickening process and various factors. This paper proposed a model which analyzed the variation of the underflow concentration from a number of influencing factors in the concentrating process. It can accurately predict the underflow concentration. After preprocessing and feature selection of the history data set of the deep-cone thickener, this model uses the eXtreme gradient boosting(XGBOOST) in machine learning to deal with the relationship between the influencing factors and the underflow concentration, so as to achieve a more comprehensive prediction of the underflow concentration of the deep-cone thickener. The experimental results show that the underflow concentration prediction model based on XGBOOST shows a mean absolute error(MAE) of 0.31% and a running time of 1.6 s on the test set constructed in this paper, which fully meet the demand. By comparing the following three classical algorithms: back propagation(BP) neural network, support vector regression(SVR) and linear regression, we further verified the superiority of XGBOOST under the conditions of this study.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号