首页> 中文期刊> 《中南大学学报(英文版)》 >Effect of Friedel's salt on strength enhancement of stabilized chloride saline soil

Effect of Friedel's salt on strength enhancement of stabilized chloride saline soil

         

摘要

In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fill, an artificial chloride saline soil, and a non-saline soil were stabilized by Portland cement(PC) and PC with Ca(OH)_2(CH) with different contents. A series of unconfined compressive strength(UCS) tests of stabilized soil specimen after curing for 7 d and 28 d were carried out, and the hydration products and microstructure of the specimens were observed by X-ray diffractometry(XRD), scanning electronic microscopy(SEM), and energy-dispersive X-ray analysis(EDXA). The results showed that the strengths of PC+CH-stabilized chloride saline soils were much higher than those of PC-stabilized soils. A new hydration product of calcium aluminate chloride hydrate, also known as Friedel's salt, appeared in the PC+CH-stabilized chloride saline soils. The solid-phase volume of Friedel's salt expanded during the formation of the hydrate; this volume filled the pores in the stabilized soil. This pore-filling effect was the most important contribution to the significantly enhanced strength of the PC+CH-stabilized chloride saline soils. On the basis of this understanding, a new optimized stabilizer was designed according to the concept that the chloride in saline soil could be utilized as a component of the stabilizer. The strength of the chloride saline soils stabilized by the optimized stabilizer was even further increased compared with that of the PC+CH-stabilized soils.

著录项

  • 来源
    《中南大学学报(英文版)》 |2017年第4期|937-946|共10页
  • 作者单位

    School of Transportation Science and Engineering Beihang University Beijing 100191 China;

    School of Transportation Science and Engineering Beihang University Beijing 100191 China;

    School of Transportation Science and Engineering Beihang University Beijing 100191 China;

    College of Architecture and Civil Engineering Taiyuan University of Technology Taiyuan 030024 China;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号