首页> 中文期刊> 《吉林大学仿生工程学报:英文版》 >Optimum Anti-erosion Structures and Anti-erosion Mechanism for Rotatory Samples Inspired by Scorpion Armor of Parabuthus transvaalicus

Optimum Anti-erosion Structures and Anti-erosion Mechanism for Rotatory Samples Inspired by Scorpion Armor of Parabuthus transvaalicus

         

摘要

Solid particle erosion on the material surfaces is a very common phenomenon in the industrial field,which greatly affects the efficiency,service life,and even poses a great threat to life safety.However,current research on erosion resistance is not only inefficient,but also limited to the improvement of hardness and toughness of materials.Inspired by typical scorpion(Parabuthus transvaalicus),biomimetic functional samples with exquisite anti-rosion structures were manufactured.Macroscopic morphology and structure of the biological prototype were analyzed and measured.According to above analysis,combined with response surface methodology,a set of biomimetic samples with different structural parameters were fabricated by using 3D printing technology.The anti-crosion performance of these biomimetic samples was investigated using a blasting jet machine.Based on the results of blasting jet test,as well as regression analysis and fiting,the optimal structural parameters were obtained.In addition to the static test conditions,the optimal biomimetic sample was also eroded in rotating condition and showed excellent erosion resistance property.The presence of bump and groove structures,on the one hand,reduced the croded area of biominetic sample surface.On the other hand,they made the airlow turbulent and consequently reduced the impact cnergy of solid particles,which significantly improved the erosion resistance of biomimetic materials.This study provides a new strategy to improvethe service life of components easily affected by erosion in the aviation,energy and military fields.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号