首页> 中文期刊> 《自动化学报(英文版)》 >A Delay-Dependent Anti-Windup Compensator for Wide-Area Power Systems With Time-Varying Delays and Actuator Saturation

A Delay-Dependent Anti-Windup Compensator for Wide-Area Power Systems With Time-Varying Delays and Actuator Saturation

         

摘要

In this paper, a delay-dependent anti-windup compensator is designed for wide-area power systems to enhance the damping of inter-area low-frequency oscillations in the presence of time-varying delays and actuator saturation using an indirect approach. In this approach, first, a conventional wide-area damping controller is designed by using output feedback with regional pole placement approach without considering time-varying delays and actuator saturation. Then to mitigate the effect of both time-varying delays and actuator saturation, an add-on delay-dependent anti-windup compensator is designed. Based on generalized sector conditions, less conservative delay-dependent sufficient conditions are derived in the form of a linear matrix inequality(LMI) to guarantee the asymptotic stability of the closedloop system in the presence of time-varying delays and actuator saturation by using Lyapunov-Krasovskii functional and Jensen integral inequality. Based on sufficient conditions, the LMI-based optimization problem is formulated and solved to obtain the compensator gain which maximizes the estimation of the region of attraction and minimizes the upper bound of-gain. Nonlinear simulations are performed first using MATLAB/Simulink on a two-area four-machine power system to evaluate the performance of the proposed controller for two operating conditions, e.g.,3-phase to ground fault and generator 1 terminal voltage variation. Then the proposed controller is implemented in real-time on an OPAL-RT digital simulator. From the results obtained it is verified that the proposed controller provides sufficient damping to the inter-area oscillations in the presence of time-varying delays and actuator saturation and maximizes the estimation of the region of attraction.

著录项

  • 来源
    《自动化学报(英文版)》 |2020年第1期|106-117|共12页
  • 作者单位

    Department of Electrical Engineering National Institute of Technology Rourkela 769008 India;

    School of Electrical Sciences Indian Institute of Technology Farmagudi Goa 403401 India;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号