首页> 中文期刊> 《高等学校化学研究:英文版》 >Ultrasonic-assisted Biodegradation of Endocrine DisruptingCompounds in Soil by Pseudomonas putida: the Importance of Rhamnolipid for Intermediate Product Degradation

Ultrasonic-assisted Biodegradation of Endocrine DisruptingCompounds in Soil by Pseudomonas putida: the Importance of Rhamnolipid for Intermediate Product Degradation

         

摘要

The present study aimed to completely remove estrogens, including oestrone(E1), oestradiol(E2), oes-triol(E3), 17a-ethinylestradiol(EE2) and bisphenol-A(BPA), from soil using Pseudomonas putida(P., putida). A centralcomposite design was developed to determine the optimal conditions of three variables(ultrasonication time, quantityof P. putida, and concentration of added rhamnolipid) for the removal of the estrogens, and the biodegradation ratesof the estrogens were investigated under the optimum conditions. Moreover, a quantitative structure-biedegradationrelationship(QSBR) was used to analyze the effect of the estrogenic physicochemical properties on the enhancementof the biological degradation. The optimal conditions were an ultrasonication time of 3 min, a P. putida quantity of 8mL, and a rhamnolipid concentration of 100 mg/L. These conditions resulted in removal of 100%, 94.86%, 94.90%,96.56% and 94.56% of El, E2, EE2, BPA and E3, respectively after 7 d. The degradations were more rapid and com-plete than those reported in previous studies, indicating the suitability of the adaptation of P. putida to estrogen de-gradation under conditions of ultrasonic-assistance and adding rhamnolipid, improvement was particularly apparentfrom the complete degradation of E3. Based on a Pearson correlation analysis, the estrogen molecule polar surfacearea(PSA) and surface tension were significantly related to the biodegradation effect. An analysis of the QSBR modelwith the estrogen biodegradation rates as a dependent variable and the PSA and surface tension as independent va-riables indicated that larger PSA caused decreased estrogen biodegradation, while the biodegradation progress wasdominated by the surface tension of the estrogens. The interaction of PSA and surface tension had an antagonistic ef-fect on the biodegradation of estrogens. Therefore, rhamnolipid/ultrasonication can significantly improve the biode-gradation rates of oestrogens in soil, while simultaneously adjusting other environmental conditions would influenceand control the biodegradation processes of estrogens.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号