首页> 中文期刊> 《地学前缘:英文版》 >Exploring the metamorphic consequences of secular change in the siliciclastic compositions of continental margins

Exploring the metamorphic consequences of secular change in the siliciclastic compositions of continental margins

         

摘要

Shale and greywacke compositions from the Archean to Phanerozoic record a secular change in the siliciclastic material that comprises much of Earth's continental margins, past and present. This study explores the metamorphic consequence of these compositional changes, by comparing phase equilibrium models constructed for average Archean, Proterozoic, and Phanerozoic shale and greywacke compositions equilibrated along two Barrovian-type geotherms: 1330℃/GPa(A) and 800 ℃/GPa(B). Our models show that Archean siliciclastic rocks can retain up to 4 vol.% water at middle to lower crustal conditions, nearly twice that of Proterozoic and Phanerozoic compositions. The increased ferromagnesium content of Archean siliciclastic rocks stabilizes chlorite to higher temperatures and results in a biotite-rich assemblage at solidus temperatures. Accordingly, water-absent biotite dehydration melting is predicted to play a greater role in the generation of melt in the metamorphism of Archean aged units,and water-absent muscovite dehydration melting is of increasing importance through the Proterozoic and Phanerozoic. This secular variation in predicted mineral assemblages demonstrates the care with which metamorphic facies diagrams should be applied to Archean compositions. Moreover, secular changes in the composition of shale and greywacke is reflected in the evolution of anatectic melt towards an increasingly less viscous, Ca-rich, and Mg-poor monzogranite.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号