首页> 中文期刊> 《基因组蛋白质组与生物信息学报:英文版》 >Deciphering Brain Complexity Using Single-cell Sequencing

Deciphering Brain Complexity Using Single-cell Sequencing

         

摘要

The human brain contains billions of highly differentiated and interconnected cells that form intricate neural networks and collectively control the physical activities and high-level cognitive functions, such as memory, decision-making, and social behavior. Big data is required to decipher the complexity of cell types, as well as connectivity and functions of the brain. The newly developed single-cell sequencing technology, which provides a comprehensive landscape of brain cell type diversity by profiling the transcriptome, genome, and/or epigenome of individual cells,has contributed substantially to revealing the complexity and dynamics of the brain and providing new insights into brain development and brain-related disorders. In this review, we first introduce the progresses in both experimental and computational methods of single-cell sequencing technology.Applications of single-cell sequencing-based technologies in brain research, including cell type classification, brain development, and brain disease mechanisms, are then elucidated by representative studies. Lastly, we provided our perspectives into the challenges and future developments in the field of single-cell sequencing. In summary, this mini review aims to provide an overview of how big data generated from single-cell sequencing have empowered the advancements in neuroscience and shed light on the complex problems in understanding brain functions and diseases.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号