首页> 中文期刊> 《矿物冶金与材料学报:英文版》 >Numerical simulation of flash reduction in a drop tube reactor with variable temperatures

Numerical simulation of flash reduction in a drop tube reactor with variable temperatures

         

摘要

A computational fluid dynamics(CFD)model was developed to accurately predict the flash reduction process,which is considered an efficient alternative ironmaking process.Laboratory-scale experiments were conducted in drop tube reactors to verify the accuracy of the CFD model.The reduction degree of ore particles was selected as a critical indicator of model prediction,and the simulated and experimental results were in good agreement.The influencing factors,including the particle size(20–110μm),peak temperature(1250–1550°C),and reductive atmosphere(H_(2)/CO),were also investigated.The height variation lines indicated that small particles(50μm)had a longer residence time(3.6 s)than large particles.CO provided a longer residence time(~1.29 s)than H_(2)(~1.09 s).However,both the experimental and analytical results showed that the reduction degree of particles in CO was significantly lower than that in H2 atmosphere.The optimum experimental particle size and peak temperature for the preparation of high-quality reduced iron were found to be 50μm and 1350°C in H2 atmosphere,and40μm and 1550°C in CO atmosphere,respectively.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号