首页> 中文期刊> 《计算机、材料和连续体(英文)》 >Hip Fracture Risk Assessment Based on Different Failure Criteria Using QCT-Based Finite Element Modeling

Hip Fracture Risk Assessment Based on Different Failure Criteria Using QCT-Based Finite Element Modeling

         

摘要

Precise evaluation of hip fracture risk leads to reduce hip fracture occurrence in individuals and assist to check the effect of a treatment.A subject-specific QCT-based finite element model is introduced to evaluate hip fracture risk using the strain energy,von-Mises stress,and von-Mises strain criteria during the single-leg stance and the sideways fall configurations.Choosing a proper failure criterion in hip fracture risk assessment is very important.The aim of this study is to define hip fracture risk index using the strain energy,von Mises stress,and von Mises strain criteria and compare the calculated fracture risk indices using these criteria at the critical regions of the femur.It is found that based on these criteria,the hip fracture risk at the femoral neck and the intertrochanteric region is higher than other parts of the femur,probably due to the larger amount of cancellous bone in these regions.The study results also show that the strain energy criterion gives more reasonable assessment of hip fracture risk based on the bone failure mechanism and the von-Mises strain criterion is more conservative than two other criteria and leads to higher estimate of hip fracture risk indices.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号