首页> 中文期刊> 《材料导报:能源(英文)》 >A density-functional-theory-based and machine-learning-accelerated hybrid method for intricate system catalysis

A density-functional-theory-based and machine-learning-accelerated hybrid method for intricate system catalysis

         

摘要

Being progressively applied in the design of highly active catalysts for energy devices,machine learning(ML)technology has shown attractive ability of dramatically reducing the computational cost of the traditional density functional theory(DFT)method,showing a particular advantage for the simulation of intricate system catalysis.Starting with a basic description of the whole workflow of the novel DFT-based and ML-accelerated(DFT-ML)scheme,and the common algorithms useable for machine learning,we presented in this paper our work on the development and performance test of a DFT-based ML method for catalysis program(DMCP)to implement the DFT-ML scheme.DMCP is an efficient and user-friendly program with the flexibility to accommodate the needs of performing ML calculations based on the data generated by DFT calculations or from materials database.We also employed an example of transition metal phthalocyanine double-atom catalysts as electrocatalysts for carbon reduction reaction to exhibit the general workflow of the DFT-ML hybrid scheme and our DMCP program.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号