首页> 中文期刊> 《应用数学与应用物理(英文)》 >Application of a Machine Learning Algorithm for the Structural Optimization of Circular Arches with Different Cross-Sections

Application of a Machine Learning Algorithm for the Structural Optimization of Circular Arches with Different Cross-Sections

         

摘要

Arches are employed for bridges. This particular type of structures, characterized by a very old use tradition, is nowadays, widely exploited because of its strength, resilience, cost-effectiveness and charm. In recent years, a more conscious design approach that focuses on a more proper use of the building materials combined with the increasing of the computational capability of the modern computers, has led the research in the civil engineering field to the study of optimization algorithms applications aimed at the definition of the best design parameters. In this paper, a differential formulation and a MATLAB code for the calculation of the internal stresses in the arch structure are proposed. Then, the application of a machine learning algorithm, the genetic algorithm, for the calculation of the geometrical parameters, that allows to minimize the quantity of material that constitute the arch structures, is implemented. In this phase, the method used to calculate the stresses has been considered as a constraint function to reduce the range of the solutions to the only ones able to bear the design loads with the smallest volume. In particular, some case studies with different cross-sections are reported to prove the validity of the method and to compare the obtained results in terms of optimization effectiveness.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号