首页> 中文期刊> 《应用数学与应用物理(英文)》 >Simplified Integral Calculations for Radial Fin with Temperature-Dependent Thermal Conductivity

Simplified Integral Calculations for Radial Fin with Temperature-Dependent Thermal Conductivity

         

摘要

Numerical solution of a radiative radial fin with temperature-dependent thermal conductivity is presented. Calculations are implemented along the lines of a boundary integral technique coupled with domain discretization. Localized solutions of the nonlinear governing differential equation are sought on each element of the problem domain after enforcing inter-nodal connectivity as well as the boundary conditions for the dependent variables. A finite element-type assembly of the element equations and matrix solution yield the scalar profile. Comparison of the numerical results with those found in literature validates the formulation. The effects of such problem parameters as radiation-sink temperature, thermal conductivity, radiation-conduction fin parameter, volumetric heat generation, on the scalar profile were found to be in conformity with the physics of the problem. We also observed from this study that the volumetric heat generation plays a significant role in the overall heat transfer activity for a fin. For relatively high values of internal heat generation, a situation arises where a greater percentage of this energy can not escape to the environment and the fin ends up gaining energy instead of losing it. And the overall fin performance deteriorates. The same can also be said for the radiation-conduction parameter , whose increases can only give physically realistic results below a certain threshold value.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号