首页> 中文期刊>材料物理与化学进展(英文) >Effect of Switching on Metal-Organic Interface Adhesion Relevant to Organic Electronic Devices

Effect of Switching on Metal-Organic Interface Adhesion Relevant to Organic Electronic Devices

     

摘要

Considerable efforts are currently being devoted to investigation of metal-organic, organic-organic and organic-inorganic interfaces relevant to organic electronic devices such as organic light emitting diode (OLEDs), organic photovoltaic solar cells, organic field effect transistors (OFETs), organic spintronic devices and organic-based Write Once Read Many times (WORM) memory devices on both rigid and flexible substrates in laboratories around the world. The multilayer structure of these devices makes interfaces between dissimilar materials in contact and plays a prominent role in charge transport and injection efficiency which inevitably affect device performance. This paper presents results of an initial study on how switching between voltage thresholds and chemical surface treatment affects adhesion properties of a metal-organic (Au-PEDOT:PSS) contact interface in a WORM device. Contact and Tapping-mode Atomic Force Microscopy (AFM) gave surface topography, phase imaging and interface adhesion properties in addition to SEM/EDX imaging which showed that surface treatment, switching and surface roughness all appeared to be key factors in increasing interface adhesion with implications for increased device performance.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号