首页> 中文期刊> 《清洁煤炭能国际期刊(英文)》 >Analysis on the Governing Reactions in Coal Oxidation at Temperatures up to 400amp;deg;C

Analysis on the Governing Reactions in Coal Oxidation at Temperatures up to 400amp;deg;C

         

摘要

The present study aims to further understanding of the principal reactions that occur during coal oxidation at moderate temperatures. Mass change and heat evolution of a sample were monitored by thermo-gravimetric analysis coupled with differential thermal analysis (TGA/DTA). Gaseous and solid products were traced using online or in situ Fourier trans- form infrared spectroscopy (FTIR). Measurements were conducted by heating the samples up to 400?C, with the O2 concentration in the reaction medium set at 0, 10, 21, and 40 vol%, respectively. It was observed that the mass increase of a sample between 150?C and ~275oC was a result of the accumulation of C=O containing species in the coal structure, whereas substantial mass loss and heat evolution of a sample at ~400oC can be attributed to the significant involvement of the direct “burn-off” reaction. Enrichment of O2 inthe reaction medium leads to the acceleration in oxygen chemi- sorption, formation and decomposition of the solid oxygenated complexes, as well as the “burn-off” reaction. With the temperature increasing, the oxidation process governed by oxygen chemisorption gradually shifts to that by significant decomposition reactions, and eventually to that by the direct “burn-off” reaction. Temperature boundaries of these stages can be determined using parameters defined based on a set of TG/DTA data. Shift in the governing reactions is essentially due to the diverse requirements of reactants of the reactions and their energy barriers to be overcome. In en- gineering practice, the phenomena of self-heating and spontaneous combustion of coal correspond to chemisorption and the direct “burn-off” reaction, respectively.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号