首页> 中文期刊> 《传感技术(英文)》 >Temperature Effects on Gas Sensing Properties of Electrodeposited Chlorine Doped and Undoped n-Type Cuprous Oxide Thin Films

Temperature Effects on Gas Sensing Properties of Electrodeposited Chlorine Doped and Undoped n-Type Cuprous Oxide Thin Films

         

摘要

As one of the most widely used domestic fuels, the detection of possible leakages of Liquefied Petroleum (LP) gas from production plants, from cylinders during their storage, transport and usage is of utmost importance. This article discusses a study of the response of undoped and chlorine doped electrodeposited n-type Cuprous Oxide (Cu2O) films to of LP gas. Undoped n-type Cu2O films were fabricated in an electrolyte bath containing a solution of sodium acetate and cupric acetate whereas n-type chlorine doped Cu2O thin films were prepared by adding a 0.02 M cuprous chloride (CuCl2) into an electrolyte solution containing lactic acid, cupric sulfate and sodium hydroxide. The n-type conductivity of the deposited films was determined using spectral response measurements. The structural and morphological properties of the fabricated films were monitored using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Due to doping, the overall conductivity of the chlorine doped n-type Cu2O films increased by several orders of magnitude. The temperature dependent gas responses of both the undoped and chlorine doped n-type Cu2O thin films to the LP gas was monitored by measuring the electrical resistance (R), and using the contact probe method at a constant gas flow rate of 0.005 ml/s. Upon exposure to gases, both doped and undoped films showed a good response to the gas by increasing/decreasing the electrical resistance by ΔR. The undoped n-type Cu2O thin films showed a negative response (ΔR 2O thin films initially showed a positive response (ΔR > 0) to the LP gas which then reversed its sign to give a negative response which peaked at 52°C. The positive response shown by the chlorine doped Cu2O films vanished completely at 42°C.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号