首页> 中文期刊> 《应用数学与应用物理(英文)》 >Numeric and Analytic Investigation on Phase Diagrams and Phasetransitions of the ν = 2/3 Bilayer Fractional Quantum Hall Systems

Numeric and Analytic Investigation on Phase Diagrams and Phasetransitions of the ν = 2/3 Bilayer Fractional Quantum Hall Systems

         

摘要

The phase diagrams and phase transitions of a typical bilayer fractional quantum Hall (QH) system with filling factor ν = 2/3 at the layer balanced point are investigated theoretically by finite size exact-diagonalization calculations and an exactly solvable model. We find some basic features essentially different from the bilayer integer QH systems at ν = 2, reflecting the special characteristics of the fractional QH systems. The degeneracy of the ground states occurs depending on the difference between intralayer and interlayer Coulomb energies, when interlayer tunneling energy (ΔSAS) gets close to zero. The continuous transitions of the finite size systems between the spin-polarized and spin-unpolarized phases are determined by the competition between the Zeeman energy (ΔZ) and the electron Coulomb energy, and are almost not affected by ΔSAS.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号