首页> 中文期刊> 《生命科学与技术进展(英文)》 >Optimization Techniques and Development of Neural Models Applied in Biosurfactant Production by iBacillus subtilis/iUsing Alternative Substrates

Optimization Techniques and Development of Neural Models Applied in Biosurfactant Production by iBacillus subtilis/iUsing Alternative Substrates

         

摘要

Bacillus subtilis was investigated as production of biosurfactant using a combination based on waste of candy industry and glycerol from biodiesel production process as only substrate. The experimental design chosen for optimization by response surface methodology was a central composite rotatable design (CCRD) and dry weight (DW) and crude biosurfactant (CB) concentrations were selected as responses in analysis. Two techniques were implemented response surface methodology (RSM) and artificial neural network (ANN). First challenge of study was to assess the effects of the interactions between variables and reach optimum values. With the CCRD results, RSM and ANN models were developed, optimizing the production of biosurfactant. The correlation coefficients (R2) of RSM models explained 88% for DW and 73% for CB of the interactions among substrate concentrations, while ANN models explained 99% for DW and 98% for CB, demonstrating that developed ANN models were more accurate and consistent in predicting optimized conditions than RSM model. The maximum DW and CB produced in the optimum conditions were 25.60 ± 5.0 g/L and 668 ± 40 mg/L, respectively. The crude biosurfactant also showed applications in cases of oil spreading in water due to clear zone produced in Petri dishes assays.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号