首页> 中文期刊> 《镁合金学报(英文)》 >Cooling rate controlled basal precipitates and age hardening response of solid-soluted Mg-Gd-Er-Zn-Zr alloy

Cooling rate controlled basal precipitates and age hardening response of solid-soluted Mg-Gd-Er-Zn-Zr alloy

         

摘要

The precipitation and age hardening response of the solid-soluted Mg–10Gd–1Er–1Zn–0.6Zr(wt.%)alloy performed by water-quenching(QC),air-cooling(AC)and furnace-cooling(FC)in terms of the volume fraction of precipitates and tensile properties were investigated in present paper.Results indicated the solid-soluted alloy contained stacking faults(SFs)and long period stacking ordered(LPSO)phase on the basal planes regardless of the cooling rate,but a larger volume fraction of the LPSO phase was formed with decreasing in the cooling rate.After aging,βandβ1 phases precipitated on the prismatic planes,and their number density decreased but mean particle size increased with decreasing in the cooling rate.The solid-soluted alloys(QC,AC and FC samples)showed no apparent difference in yield strength(YS),but their correspondent peak-aged alloys exhibited sharp difference in hardening response.The strongest hardening response took place in the QC sample and showed 82MPa enhancement in YS,which was much larger than that of AC(+26MPa)and FC samples(+5MPa).The reason lies in that the higher cooling rate promotes the precipitation and reduces the average size ofβprecipitate.A novel cooling-rate controlled precipitation model with respect to the correlation of precipitates on basal and prismatic planes was established.From this model,the basal precipitates showed a restrictive effect on the growth and/or coarsening ofβprecipitate,and composite precipitates containing theβphase with fine size as well as high area-number density and lower volume fraction of the LPSO phase are preferred to strengthen the Mg–10Gd–1Er–1Zn–0.6Zr alloy.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号