首页> 中文期刊> 《工程与科学中的计算机建模(英文)》 >Dynamic Analysis of Non-Symmetric Functionally Graded (FG) Cylindrical Structure under Shock Loading by Radial Shape Function Using Meshless Local Petrov-Galerkin (MLPG) Method with Nonlinear Grading Patterns

Dynamic Analysis of Non-Symmetric Functionally Graded (FG) Cylindrical Structure under Shock Loading by Radial Shape Function Using Meshless Local Petrov-Galerkin (MLPG) Method with Nonlinear Grading Patterns

         

摘要

In this paper,dynamic behavior of non-symmetric Functionally Graded(FG)cylindrical structure under shock loading is carried out.Dynamic equations in the polar coordinates are drawn out using Meshless Local Petrov-Galerkin(MLPG)method.Nonlinear volume fractions are used for radial direction to simulate the mechanical properties of Functionally Graded Material(FGM).To solve dynamic equations of nonsymmetric FG cylindrical structure in the time domain,the MLPG method are combined with the Laplace transform method.For computing the inverse Laplace transform in the present paper,the Talbot algorithm for the numerical inversion is used.To verify the obtained results by the MLPG method,these results are compared with the analytical solution and the Finite Element Method(FEM).The obtained results through the MLPG method show a good agreement in comparison to other results and the MLPG method has high accuracy for dynamic analysis of non-symmetric FG cylindrical structure.The capability of the present method to dynamic analysis of non-symmetric FG cylindrical structure is demonstrated by dynamic analysis of the cylinder with different volume fraction exponents under harmonic and rectangular shock loading.The present method shows high accuracy,efficiency and capability to dynamic analysis of non-symmetric FG cylindrical structure with nonlinear grading patterns,which furnishes a ground for a more flexible design.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号