首页> 中文期刊> 《中国稀土学报:英文版》 >Preparation and characterization of Ce(1-x)PrxO2 supports and their catalytic activities

Preparation and characterization of Ce(1-x)PrxO2 supports and their catalytic activities

         

摘要

In this work, the addition of praseodymium(Pr) into ceria as a mixed oxide support in a form of Ce_(1-x)Pr_xO_2(x = 0.01,0.025, 0.050, 0.075 and 0.10) was prepared using a co-precipitation method. The structural and textural properties of the synthesized supports were characterized by X-ray diffraction(XRD), N_2 adsorption-desorption, Raman spectroscopy, H_2-temperature programmed reduction(H_2-TPR) and H_2-chemisorption. Upon addition of Pr, XRD patterns and Raman spectra indicated an enlargement of ceria unit cell and the characteristics Raman broad peak at 570 cm^(-1) which was attributed to the existence of oxygen vacancies in the ceria lattice. This indicated that some Ce^(4+) ions in ceria were replaced by larger Pr^(3+) cations. To evidence the incorporation of Pr^(3+) cations into ceria lattice,X-ray absorption near edge structure(XANES) was employed. The results showed that the oxidation states of Ce in mixed oxide supports were slightly lower than 4+ while those of Pr were still the same as a precursor salt. Therefore, the incorporation of Pr^(3+) into ceria lattice would lead to strain and unbalanced charge and result in oxygen vacancies. The reducibility of Ce_(1-x)Pr_xO_2 mixed oxide supports was investigated by H_2-TPR and temperature-resolved X-ray absorption spectroscopy experiment under reduction conditions. XANES spectra of Ce L_3 edges showed a lower surface reduction temperature(Ce^(4+)to Ce^(3+)) of Ce_(0.925)Pr_(0.075)O_2 than that of CeO_2 which agreed with H_2-TPR results. H_2-chemisorption indicated that Pr promoted the dispersion of the metal catalyst on the mixed oxide support and increased the adsorption site for CO. For WGS reaction, 1% Pd/mixed oxide support had higher WGS activity than 1%Pd/ceria. The increase of WGS activity was due to the increase of Pd dispersion on the support and the existence of oxygen vacancies produced from incorporation of Pr into the ceria lattice.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号