首页> 中文期刊> 《中国机械工程学报:英文版》 >Dynamic Stiffness Analysis and Experimental Verification of Axial Magnetic Bearing Based on Air Gap Flux Variation in Magnetically Suspended Molecular Pump

Dynamic Stiffness Analysis and Experimental Verification of Axial Magnetic Bearing Based on Air Gap Flux Variation in Magnetically Suspended Molecular Pump

         

摘要

Current and displacement stiffness are important parameters of axial magnetic bearing(AMB)and are usually considered as constants for the control system.However,in actual dynamic work situations,time-varying force leads to time-varying currents and air gap with a specific frequency,which makes the stiffness of appear decrease and even worsens control performance for the whole system.In this paper,an AMB dynamic stiffness model considering the flux variation across the air gap due to frequency is established to obtain the accurate dynamic stiffness.The dynamic stiffness characteristics are analyzed by means of the dynamic equivalent magnetic circuit method.The analytical results show that the amplitude of current and displacement stiffness decreases with frequency increasing.Moreover,compared with the stiffness model without considering the variation of flux density across the air gap,the improved dynamic stiffness results are closer to the actual results.Through the dynamic stiffness measurement method of AMB,experiments of AMB in magnetically suspended molecular pump(MSMP)are carried out and the experimental results are consistent with theoretical analysis results.This paper proposes the dynamic stiffness model of axial magnetic bearing considering the variation of flux density across the air gap,which improves the accuracy of the AMB stiffness analysis.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号