首页> 中文期刊> 《中国机械工程学报:英文版》 >Three-Steps-Meshing Based Multiple Crack Identification for Structures and Its Experimental Studies

Three-Steps-Meshing Based Multiple Crack Identification for Structures and Its Experimental Studies

         

摘要

Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A three-step-meshing method for the multiple cracks identification in structures is presented. Firstly, the changes in natural frequency of a structure with various crack locations and depth are accurately obtained by means of wavelet finite element method, and then the damage coefficient method is used to determine the number and the region of cracks. Secondly, different regions in the cracked structure are divided into meshes with different scales, and then the small unit containing cracks in the damaged area is gradually located by iterative computation. Lastly, by finding the points of intersection of three frequency contour lines in the small unit, the crack location and depth are identified. In order to verify the effectiveness of the presented method, a multiple cracks identification experiment is carried out. The diagnostic tests on a cantilever beam under two working conditions show the accuracy of the proposed method: with a maximum error of crack location identification 2.7% and of depth identification 5.2%. The method is able to detect multiple crack of beam with less subdivision and higher precision, and can be developed as a multiple crack detection approach for complicated structures.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号