首页> 中文期刊> 《中国机械工程学报:英文版》 >Optimization Study on a Single-cylinder Compressed Air Engine

Optimization Study on a Single-cylinder Compressed Air Engine

         

摘要

The current research of compressed air engine(CAE) mainly focused on simulations and system integrations. However, energy efficiency and output torque of the CAE is limited, which restricts its application and popularization. In this paper, the working principles of CAE are briefly introduced. To set a foundation for the study on the optimization of the CAE, the basic mathematical model of working processes is set up. A pressure-compensated valve which can reduce the inertia force of the valve is proposed. To verify the mathematical model, the prototype with the newly designed pressure-compensated intake valve is built and the experiment is carried out, simulation and experimental results of the CAE are conducted, and pressures inside the cylinder and output torque of the CAE are obtained. Orthogonal design and grey relation analysis are utilized to optimize structural parameters. The experimental and optimized results show that, first of all, pressure inside the cylinder has the same changing tendency in both simulation curve and experimental curve. Secondly, the highest average output torque is obtained at the highest intake pressure and the lowest rotate speed. Thirdly, the optimization of the single-cylinder CAE can improve the working efficiency from an original 21.95% to 50.1%, an overall increase of 28.15%, and the average output torque increases also increases from 22.047 5 N · m to 22.439 N · m. This research designs a single-cylinder CAE with pressure-compensated intake valve, and proposes a structural parameters design method which improves the single-cylinder CAE performance.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号