首页> 中文期刊> 《中国地球化学学报:英文版》 >Water-Rock Interaction in Tarim Basin: Constraints from Oilfield Water Geochemistry

Water-Rock Interaction in Tarim Basin: Constraints from Oilfield Water Geochemistry

         

摘要

Oilfield waters from Cenozoic and Mesozoic terrestrial and Paleozoic marine environments in the Tarim Basin show no obvious difference in water chemistry except Br and isotopic compositions. The Paleozoic marine strata have higher Br concentrations than the terrestrial sediments, and the lack of obvious relationship between Br and Ⅰ suggests that Br is not, for the most part, derived from the degradation of organic matter. The oilfield waters are characterized by high TDS (total dissolved solids), ranging from 120000mg/L to 320000mg/L,relatively low Mg, high Ca, Sr, and CF relative to Br of evaporating seawater, suggestive of enhanced water-rock interaction. (Al (organic acid anions) concentrations are generally lower than 1500 mg/L with high values occurring over the temperature range from 95℃ to 140℃ ,in the Cambrian to Jurassic systems, and nearby unconformities. Organic acids are considered to be generated mainly from thermal maturation of kerogens during progressive burial of the Jurassic-Triassic and Cambrian-Ordovician systems, biodegradation of crude oils nearby unconformities, and thermochemical sulfate reduction in part of the Cambrian and Ordovician strata.High Al concentrations up to 3 mg/L to 5. 5 mg/L tend to occur in the waters of high OAA or petroleum- bearing intervals, suggesting the presence of organic complexing agents. Calculation by SOLMINEQ. 88 with updated database shows that AlAc2+ may account for more than 30%of the total Al. IsotoPic measurements (δD, δ18O) provide evidence for the following types of waters: diagenetically- modified connate meteoric water from the Jurassic and Triassic strata;diagenetically-modified connate marine water from the Cambrian and Ordovician strata; subaerially-evaporated water from the Cenozoic and Cretaceous strata; and mixed meteoric-evaporated or/and diagenetically modified connate water from the Carboniferous strata and reservoirs adjacent to the J/C and T/C unconformities. Those waters with very negativeδD values from -51. 30‰. to - 53. 80‰ (SMOW) and positive δ18 O values from 2. 99‰ to 4. 99‰(SMOW) in the continuous burial of the Cambrian-Ordovician system are explained to have resulted from hydrocarbon-water and water-rock interactions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号