首页> 中文期刊> 《中国化学工程学报:英文版》 >A comparative process simulation study of Ca-Cu looping involving post-combustion CO2 capture

A comparative process simulation study of Ca-Cu looping involving post-combustion CO2 capture

         

摘要

This work presents a simulation study of several Ca-Cu looping variants with CO(2)capture,aiming at both parameter optimization and exergy analysis of these Ca-Cu looping systems.Three kinds of Ca-Cu looping are considered:(1)carbonation-calcination/reduction-oxidation;(2)carbonation-oxidation-calcination/reduction and (3)carbona tion/oxidation-calcination/reduction.A conventional Ca looping is also simulated for comparison.The influences of the calcination temperature on the mole fractions of CO(2)and CaO at the calciner outlet,the CaCO3 flow rate on the carbonator performance and the Cu/Ca ratio on the calciner performance are analyzed.The second kind of Ca-Cu looping has the highest carbonation conversion.At 1×10^5 Pa and 820℃,complete decomposition of CaCO3 can be achieved in three Ca-Cu looping systems,while the operation condition of 1×10^5 Pa,840℃is required for the conventional Ca looping system.Furthermore,the Cu/Ca molar ratio of 5.13-5.19 is required for the Ca-Cu looping.Exergy analyses show that the maximum exergy destruction occurs in the calciner for the four modes and the second Ca-Cu looping system(i.e.,carbonation-oxidation-calcination/reduction)performs the highest exergy efficiency,up to 65.04%,which is about 30%higher than that of the conventional Ca looping.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号