首页> 中文期刊> 《中国航空学报:英文版》 >Numerical study of unsteady starting characteristics of a hypersonic inlet

Numerical study of unsteady starting characteristics of a hypersonic inlet

         

摘要

The impulse and self starting characteristics of a mixed-compression hypersonic inlet designed at Mach number of 6.5 are studied by applying the unsteady computational fluid dynamics (CFD) method. The full Navier-Stokes equations are solved with the assumption of viscous perfect gas model, and the shear-stress transport (SST) k-x two-equation Reynolds averaged Navier- Stokes (RANS) model is used for turbulence modeling. Results indicate that during impulse starting, the flow field is divided into three zones with different aerodynamic parameters by primary shock and upstream-facing shock. The separation bubble on the shoulder of ramp undergoes a generating, growing, swallowing and disappearing process in sequence. But a separation bubble at the entrance of inlet exists until the freestream velocity is accelerated to the starting Mach number during self starting. The mass flux distribution of flow field is non-uniform because of the interaction between shock and boundary layer, so that the mass flow rate at throat is unsteady during impulse starting. The duration of impulse starting process increases almost linearly with the decrease of freestream Mach number but rises abruptly when the freestream Mach number approaches the starting Mach number. The accelerating performance of booster almost has no influence on the self starting ability of hypersonic inlet.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号