首页> 中文期刊> 《中国化学快报:英文版》 >Computational insights into the effects of reagent structure and bases on nucleophilic monofluoromethylation of aldehydes

Computational insights into the effects of reagent structure and bases on nucleophilic monofluoromethylation of aldehydes

         

摘要

Although fluorobis(phenylsulfonyl)methane(FBSM)and its cyclic analog 2-fluoro-1,3-benzodithiole-1,1,3,3-tetraoxide(FBDT)possess similar physicochemical properties,Shibata et al.found that FBSM failed to undergo nucleophilic monofluoromethylation of aldehydes regardless of the reaction conditions at-tempted(using various organic and inorganic bases).However,it was later discovered by Hu et al.that the nucleophilic monofluoromethylation could be accomplished by employing lithium hexamethyldisi-lazide(LiHMDS)as a base.Herein,we present an in-depth computational investigation into the intrigu-ing effects of reagent structure and bases on the nucleophilic monofluoromethylation of aldehydes.The computations reveal the 1,4-diazabicyclo[2.2.2]octane(DABCO)catalyzed nucleophilic monofluoromethy-lation of benzaldehyde with acyclic FBSM is a thermodynamically unfavorable process mainly due to the destabilizing O···O lone pair repulsions in FBSM product,whereas such repulsion could be largely avoided in FBDT product because of its constrained five-membered ring structure.Employing LiHMDS as a base can not only facilitate the nucleophilic monofluoromethylation via Li–O interactions but also render the monofluoromethylation of benzaldehyde with FBSM thermodynamically favored.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号