首页> 中文期刊> 《大气科学进展:英文版》 >Analysis of the Characteristics of Inertia-Gravity Waves during an Orographic Precipitation Event

Analysis of the Characteristics of Inertia-Gravity Waves during an Orographic Precipitation Event

         

摘要

A numerical experiment was performed using the Weather Research and Forecasting(WRF) model to analyze the generation and propagation of inertia-gravity waves during an orographic rainstorm that occurred in the Sichuan area on 17 August 2014. To examine the spatial and temporal structures of the inertia-gravity waves and identify the wave types, three wavenumber-frequency spectral analysis methods(Fourier analysis, cross-spectral analysis, and wavelet cross-spectrum analysis)were applied. During the storm, inertia-gravity waves appeared at heights of 10–14 km, with periods of 80–100 min and wavelengths of 40–50 km. These waves were generated over a mountain and propagated eastward at an average speed of 15–20 m s^(-1). Meanwhile, comparison between the reconstructed inertia-gravity waves and accumulated precipitation showed there was a mutual promotion process between them. The Richardson number and Scorer parameter were used to demonstrate that the eastward-moving inertia-gravity waves were trapped in an effective atmospheric ducting zone with favorable reflector and critical level conditions, which were the primary causes of the long lives of the waves. Finally, numerical experiments to test the sensitivity to terrain and diabatic heating were conducted, and the results suggested a cooperative effect of terrain and diabatic heating contributed to the propagation and enhancement of the waves.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号