首页> 外文学位 >Chemical Process Design under Uncertainty -Models and Algorithms for Global Optimization
【24h】

Chemical Process Design under Uncertainty -Models and Algorithms for Global Optimization

机译:不确定性下的化学过程设计-全局优化的模型和算法

获取原文
获取原文并翻译 | 示例

摘要

Uncertainty is a fundamental factor we should consider in process design because it is inherent characteristics of any process systems. For instance, physical properties of reactants, kinetics, or value of transfer coefficient are uncertain in the design stage. Also we expect disturbances -- changes of flowrate, compositions, pressure, and temperature- during the operation. However, classical process design uses only nominal information of physical properties, transport phenomena, and reactions to find design variables in order to optimize process performance. In reality, the classical design procedure is not suitable because these parameters are not exactly known but have unavoidable variations, leading to uncertainty in the system. In addition, in practical operation the processes are exposed to changing conditions called dynamic disturbance, such us cooling water temperature or raw material quality that are dynamically changing. In order to accommodate uncertainties and dynamic disturbance in classic design, the process is usually oversized to minimize risk of operating outside specifications. However, this arbitrary overdesign does not guarantee feasibility and optimality of the process. Thus it is clear that consideration of uncertainty is necessary and important for the optimality and feasibility of operation of the chemical plant.;The first aim of this thesis is to develop novel methodologies to tackle problems of classical approach for design under uncertainty. Two main topics in design under uncertainty --flexibility analysis and integrations of design and control dealt with this thesis.;Part A addresses flexibility analysis of process. A new hybrid algorithm for flexibility analysis problem is suggested. Flexibility analysis is to quantify flexibility of a given process design to handle uncertainty in process parameters as well as variations in operating conditions. It is one of important problem in "design under uncertainty". It is formulated as a multistage global optimization problem, whose search space is discontinuous and non-differentiable. Traditional local deterministic approaches cannot solve this problem properly, so I used a new approach based stochastic method and project technique to tackle this problem. This approach can be easily parallelized, so it reduces computational time when we solve large size problems.;In part B, the problem of integrating design and control is addressed. Integration of design and control is finding an optimal design considering dynamic controllability. It aims at pursuing the synergetic power of a simultaneous approach to guarantee the economical and robust operation of the process in spite of any disturbance and uncertainty. However integration of design and control renders a complex combinatorial optimization problem which cannot be solved directly with existing mathematical methods. Thus we suggested a decomposition technique which eases the problems of this integration called embedded control optimization. In this thesis, I will extend embedded control optimization for integration of design and control. A new identification method is adopted to produce a better performance, and this methodology will be applied to large-scale processes successfully.;The second area this thesis considers is global optimization. Global optimization applications are widespread in all disciplines. Despite there are many challenging and important problems that require global solutions, relatively little effort has been made in this area compared to the area of local optimization. Specially, the problem of finding all solutions in nonconvex search area remains as still challenging and difficult area in applied mathematics, engineering, and sciences.;Part C addresses global optimization for multimodal objective functions. A novel hybrid sequential algorithm is suggested in this part. It aims to find multiple global solutions as well as local solutions. To locate multiple optimal points, it uses niche concept. It also adopts a local deterministic method to accelerate finding solutions. This algorithm was applied to tackle multiplicity problems in engineering problems such as finding multiple optimal parameters of distributed systems in problem inversion.
机译:不确定性是我们在过程设计中应考虑的基本因素,因为它是任何过程系统的固有特征。例如,在设计阶段不确定反应物的物理性质,动力学或传递系数的值。另外,我们预计操作期间也会受到干扰-流量,成分,压力和温度的变化。但是,经典过程设计仅使用物理特性,传输现象和反应的名义信息来查找设计变量,以优化过程性能。实际上,经典的设计过程并不适合,因为这些参数尚不完全清楚,但不可避免地会产生变化,从而导致系统不确定。另外,在实际操作中,过程会暴露在变化的条件下,称为动态扰动,例如冷却水温度或原材料质量会动态变化。为了适应经典设计中的不确定性和动态干扰,该过程通常会过大,以最大程度地降低超出规范运行的风险。但是,这种任意的过度设计不能保证过程的可行性和最佳性。因此,很明显,对不确定性的考虑对于化工厂的最佳操作和可行性是必要的和重要的。本论文的首要目的是开发新颖的方法来解决不确定性下经典设计方法的问题。不确定性下的设计的两个主要主题是灵活性分析以及设计与控制的集成。本文的第一部分是过程的灵活性分析。针对柔性分析问题,提出了一种新的混合算法。灵活性分析旨在量化给定过程设计的灵活性,以处理过程参数的不确定性以及操作条件的变化。这是“不确定条件下的设计”中的重要问题之一。它被表述为一个多级全局优化问题,其搜索空间是不连续且不可微的。传统的局部确定性方法无法正确解决此问题,因此我使用了一种基于随机方法和项目技术的新方法来解决此问题。这种方法很容易并行化,因此在解决大尺寸问题时减少了计算时间。B部分,解决了集成设计和控制的问题。设计与控制的集成是在考虑动态可控性的基础上找到一种最佳设计。它旨在追求同步方法的协同作用,以确保即使有任何干扰和不确定性,该过程仍可经济,可靠地运行。然而,设计和控制的集成带来了复杂的组合优化问题,而现有的数学方法无法直接解决该问题。因此,我们提出了一种分解技术,该技术可以缓解这种集成问题,称为嵌入式控制优化。在本文中,我将扩展嵌入式控制优化,以实现设计和控制的集成。采用了一种新的识别方法以产生更好的性能,该方法将成功地应用于大规模过程。全局优化应用广泛应用于所有学科。尽管存在许多需要全局解决方案的具有挑战性和重要的问题,但是与局部优化领域相比,在该领域所做的工作相对较少。特别是,在非凸搜索区域中找到所有解的问题仍然是应用数学,工程学和科学领域中仍然具有挑战性和困难的领域。C部分解决了多峰目标函数的全局优化问题。在这一部分中提出了一种新颖的混合顺序算法。它旨在找到多个全球解决方案以及本地解决方案。为了定位多个最佳点,它使用利基概念。它还采用局部确定性方法来加快寻找解决方案的速度。该算法用于解决工程问题中的多重性问题,例如在问题反演中寻找分布式系统的多个最优参数。

著录项

  • 作者

    Moon, Jeonghwa.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号