首页> 外文学位 >Electronic and Magnetic Properties of Two-dimensional Nanomaterials Beyond Graphene and Their Gas Sensing Applications: Silicene, Germanene, and Boron Carbide
【24h】

Electronic and Magnetic Properties of Two-dimensional Nanomaterials Beyond Graphene and Their Gas Sensing Applications: Silicene, Germanene, and Boron Carbide

机译:石墨烯以外的二维纳米材料的电,磁性能及其气敏应用:硅烯,锗烯和碳化硼

获取原文
获取原文并翻译 | 示例

摘要

The popularity of graphene owing to its unique properties has triggered huge interest in other two-dimensional (2D) nanomaterials. Among them, silicene shows considerable promise for electronic devices due to the expected compatibility with silicon electronics. However, the high-end potential application of silicene in electronic devices is limited owing to the lack of an energy band gap. Hence, the principal objective of this research is to tune the electronic and magnetic properties of silicene related nanomaterials through first-principles models.;I first explored the impact of edge functionalization and doping on the stabilities, electronic, and magnetic properties of silicene nanoribbons (SiNRs) and revealed that the modified structures indicate remarkable spin gapless semiconductor and half-metal behaviors. In order to open and tune a band gap in silicene, SiNRs were perforated with periodic nanoholes. It was found that the band gap varies based on the nanoribbon's width, nanohole's repeat periodicity, and nanohole's position due to the quantum confinement effect. To continue to take advantage of quantum confinement, I also studied the electronic and magnetic properties of hydrogenated silicene nanoflakes (SiNFs). It was discovered that half-hydrogenated SiNFs produce a large spin moment that is directly proportional to the square of the flake's size.;Next, I studied the adsorption behavior of various gas molecules on SiNRs. Based on my results, the SiNR could serve as a highly sensitive gas sensor for CO and NH3 detection and a disposable gas sensor for NO, NO 2, and SO2. I also considered adsorption behavior of toxic gas molecules on boron carbide (BC3) and found that unlike graphene, BC3 has good sensitivity to the gas molecules due to the presence of active B atoms. My findings divulged the promising potential of BC 3 as a highly sensitive molecular sensor for NO and NH3 detection and a catalyst for NO2 dissociation. Finally, I scrutinized the interactions of CO2 with lithium-functionalized germanene. It was discovered that although a single CO2 molecule was weakly physisorbed on pristine germanene, a significant improvement on its adsorption energy was found by utilizing Li-functionalized germanene as the adsorbent. My results suggest that Li-functionalized germanene shows promise for CO2 capture.
机译:石墨烯因其独特的性能而广受欢迎,引起了其他二维(2D)纳米材料的巨大兴趣。其中,由于预期与硅电子产品的兼容性,硅树脂在电子设备方面显示出可观的前景。然而,由于缺乏能带隙,硅在电子设备中的高端潜在应用受到限制。因此,本研究的主要目的是通过第一性原理模型来调整与硅相关的纳米材料的电子和磁性。;我首先探讨了边缘功能化和掺杂对硅纳米带的稳定性,电子和磁性的影响( SiNRs),并揭示了修饰的结构表明了显着的自旋无间隙半导体和半金属行为。为了打开和调整硅中的带隙,SiNRs上有周期性的纳米孔。已经发现,由于量子限制效应,带隙基于纳米带的宽度,纳米孔的重复周期性和纳米孔的位置而变化。为了继续利用量子限制,我还研究了氢化硅纳米薄片(SiNFs)的电子和磁性。发现半氢化的SiNFs产生的自旋矩与薄片尺寸的平方成正比。接下来,我研究了各种气体分子在SiNRs上的吸附行为。根据我的结果,SiNR可以用作用于CO和NH3检测的高灵敏度气体传感器,以及用于NO,NO 2和SO2的一次性气体传感器。我还考虑了有毒气体分子在碳化硼(BC3)上的吸附行为,发现与石墨烯不同,由于存在活性B原子,BC3对气体分子具有良好的敏感性。我的发现揭示了BC 3作为用于NO和NH3检测的高灵敏度分子传感器以及用于NO2分解的催化剂的潜力。最后,我仔细研究了CO2与锂官能化锗烯的相互作用。已经发现,尽管单个CO 2分子在原始锗烯上微弱地物理吸附,但是通过使用Li-官能化的锗烯作为吸附剂,发现了其吸附能的显着改善。我的结果表明,锂官能化的锗烯显示出有望捕获二氧化碳。

著录项

  • 作者

    Mehdi Aghaei, Sadegh.;

  • 作者单位

    Florida International University.;

  • 授予单位 Florida International University.;
  • 学科 Nanotechnology.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 281 p.
  • 总页数 281
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号