首页> 外文学位 >Methanogenic and Aerobic Biodegradation of Model Polycyclic Aromatic Compounds Associated with Canadian Oil Sands
【24h】

Methanogenic and Aerobic Biodegradation of Model Polycyclic Aromatic Compounds Associated with Canadian Oil Sands

机译:与加拿大油砂相关的模型多环芳族化合物的产甲烷和好氧生物降解

获取原文
获取原文并翻译 | 示例

摘要

Polycyclic aromatic compounds (PACs) are ubiquitous molecules that can be of high importance to remediate due to their potential negative health and environmental effects. The present study used Canadian Oil Sands-derived microbial consortia established methanogenically or aerobically and amended with phenanthrene, dibenzothiophene (DBT), or 2,6-dimethylnaphthalene (2,6-diMN) as sole carbon and energy sources under three salinities. Methane formation was statistically higher in PAC-amended treatments relative to unamended controls under brackish conditions. A fumarate addition metabolite was tentatively detected in incubations amended with 2,6-diMN. DBT was degraded with concomitant methane formation, the first report of this metabolism. 16S rRNA gene sequencing revealed the dominance of methanogens and known PACs degraders. Genus Smithella was only detected in DBT-amended incubations in relatively high abundances suggesting its role in DBT degradation anaerobically. Aerobic degradation of PHEN and 2,6-diMN was also observed. Time-course experiments showed faster PHEN degradation under saline conditions and that the microbial communities were dominated by Janibacter sp, which was also isolated. This research shows that microbial communities from bitumen-impacted environments have the natural ability to degrade PACs, with potential applications in bioremediation.
机译:多环芳族化合物(PAC)是普遍存在的分子,由于其潜在的负面健康和环境影响,因此对其进行修复非常重要。本研究使用由加拿大油砂衍生的微生物联合体,该联合体通过产甲烷或有氧方式建立,并用菲,二苯并噻吩(DBT)或2,6-二甲基萘(2,6-diMN)修正为三种盐度下的唯一碳源和能源。在微咸条件下,相对于未经修正的对照,经PAC修正的处理中甲烷的形成在统计学上更高。在用2,6-diMN修正的培养中,暂时检测出富马酸酯加成代谢物。 DBT被伴随甲烷形成而降解,这是该代谢的首次报道。 16S rRNA基因测序揭示了产甲烷菌和已知PACs降解物的优势。史密斯氏菌仅在DBT修正的培养中以相对较高的丰度被检测到,表明其在厌氧降解DBT中的作用。还观察到PHEN和2,6-diMN的有氧降解。时程实验表明,在盐分条件下,PHEN降解更快,微生物群落主要由Janibacter sp(也被分离)控制。这项研究表明,受到沥青影响的环境中的微生物群落具有降解PAC的天然能力,在生物修复中具有潜在的应用前景。

著录项

  • 作者

    Montoya, Oscar.;

  • 作者单位

    University of Calgary (Canada).;

  • 授予单位 University of Calgary (Canada).;
  • 学科 Microbiology.
  • 学位 M.S.
  • 年度 2017
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号