首页> 外文学位 >A physics driven neural networks-based simulation system (PhyNNeSS) and its application to local and remote surgery simulation.
【24h】

A physics driven neural networks-based simulation system (PhyNNeSS) and its application to local and remote surgery simulation.

机译:基于物理驱动的神经网络的仿真系统(PhyNNeSS)及其在本地和远程手术仿真中的应用。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis we propose a novel physics-driven neural networks-based simulation system (PhyNNeSS) that is capable of simulating the response of nonlinear deformable objects in real time. While an update rate of 30 Hz in considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is the most challenging task in the development of real time simulation systems.;In PhyNNeSS, an off-line pre-computation step is used in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. The data in then condensed into a set of coefficients describing neurons of a radial basis function network (RBFN). The trained neural networks can then be used in real time computations. We show, through error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. More neurons may be chosen for higher fidelity but slower simulation while fewer neurons may be chosen for coarser, but more rapid simulation. We present realistic simulation examples from interactive surgical simulation with real time force feedback.;PhyNNeSS is then applied to the solution of nonlinear coupled electro-thermal problems arising in monopolar electrosurgery. An instrumented rig was setup to perform monopolar electrocautery with the controlled motion using a robot and resulting temperature distribution on the surface was recorded. Comparison of experimental results, finite element solution and PhyNNeSS establishes the effectiveness of PhyNNeSS in solving multi-physics problems.;The major advantage of PhyNNeSS is its scalability which is essential for tele-training and tele-mentoring applications when the trainees are geographically distributed but computational resources are centralized. Hence, we have developed a multi-user collaborative surgical simulation environment based on PhyNNeSS. The major problem in such simulators that limits their use is that they tend to become unstable in the presence of time delays among the participants. A hybrid network architecture is proposed and tested in which the server can update the clients with just enough information required to independently simulate localized interaction without the necessity to interact with the server at every time step. Results for three classes of interaction, global-scale (RPI-Tokyo), continental scale (RPI-UWashington) and local area network were tested for interactive surgical collaboration experiments, each for three different accuracy levels.
机译:在本文中,我们提出了一种新的基于物理驱动的神经网络的仿真系统(PhyNNeSS),该系统能够实时仿真非线性可变形物体的响应。尽管30 Hz的更新速率被认为足以用于实时图形,但对于触觉来说,大约1 kHz的更高更新速率是必需的。基于物理的可变形对象建模,特别是当涉及到大的非线性变形和复杂的非线性材料属性时,以如此高的速率是实时仿真系统开发中最具挑战性的任务。在PhyNNeSS中,离线预使用计算步骤,其中通过将仔细规定的位移应用于可变形对象的有限元模型的每个节点来生成数据库。然后将数据压缩成一组描述径向基函数网络(RBFN)神经元的系数。然后,可以将经过训练的神经网络用于实时计算。通过错误分析,我们表明该方案是可扩展的,其准确性由仿真中使用的神经元数量控制。可以选择更多的神经元以获得更高的保真度,但模拟速度较慢,而可以选择更少的神经元进行更粗略但更快速的模拟。我们从具有实时力反馈的交互式手术模拟中提供了逼真的模拟示例。然后将PhyNNeSS应用于解决单极电外科手术中产生的非线性耦合电热问题。设置仪器平台,以使用机器人在受控的运动下执行单极电烙术,并记录表面上的温度分布。通过对实验结果,有限元解决方案和PhyNNeSS的比较,确定了PhyNNeSS在解决多物理场问题上的有效性。; PhyNNeSS的主要优点是可扩展性,这对于受训人员地理分布但远程培训和远程指导应用至关重要。计算资源是集中的。因此,我们开发了基于PhyNNeSS的多用户协作手术模拟环境。这种模拟器限制其使用的主要问题是,在参与者之间存在时间延迟的情况下,它们趋于变得不稳定。提出并测试了一种混合网络体系结构,其中服务器可以使用足以独立模拟本地化交互所需的足够信息来更新客户端,而不必在每个时间步均与服务器进行交互。测试了三类交互作用的结果,即全球规模(RPI-Tokyo),大陆规模(RPI-UWashington)和局域网,以进行交互式外科手术协作实验,每种实验均具有三个不同的准确度。

著录项

  • 作者

    Deo, Dhanannjay.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号