首页> 外文学位 >Fluid Animation on Deforming Surface Meshes
【24h】

Fluid Animation on Deforming Surface Meshes

机译:变形曲面网格上的流体动画

获取原文
获取原文并翻译 | 示例

摘要

We explore methods for visually plausible fluid simulation on deforming surfaces with inhomogeneous diffusion properties. While there are methods for fluid simulation on surfaces, not much research effort focused on the influence of the motion of underlying surface, in particular when it is not a rigid surface, such as knitted or woven textiles in motion. The complexity involved makes the simulation challenging to account for the non-inertial local frames typically used to describe the motion and the anisotropic effects in diffusion, absorption, adsorption. Thus, our primary goal is to enable fast and stable method for such scenarios.;First, in preparation of the material properties for the surface domain, we describe textiles with salient feature direction by bulk material property tensors in order to reduce the complexity, by employing 2D homogenization technique, which effectively turns microscale inhomogeneous properties into homogeneous properties in macroscale descriptions. We then use standard texture mapping techniques to map these tensors to triangles in the curved surface mesh, taking into account the alignment of each local tangent space with correct feature directions of the macroscale tensor. We show that this homogenization tool is intuitive, flexible and easily adjusted.;Second, for efficient description of the deforming surface, we offer a new geometry representation for the surface with solely angles instead of vertex coordinates, to reduce storage for the motion of underlying surface. Since our simulation tool relies heavily on long sequences of 3D curved triangular meshes, it is worthwhile exploring such efficient representations to make our tool practical by reducing the memory access during real-time simulations as well as reducing the file sizes. Inspired by angle-based representations for tetrahedral meshes, we use spectral method to restore curved surface using both angles of the triangles and dihedral angles between adjacent triangles in the mesh. Moreover, in many surface deformation sequences, it is often sufficient to update the dihedral angles while keeping the triangle interior angles fixed.;Third, we propose a framework for simulating various effects of fluid flowing on deforming surfaces. We directly applied our simulator on curved surface meshes instead of in parameter domains, whereas many existing simulation methods require a parameterization on the surface. We further demonstrate that fictitious forces induced by the surface motion can be added to the surface-based simulation at a small additional cost. These fictitious forces can be decomposed into different components. Only the rectilinear and Coriolis components are relevant to our choice of local frames. Other effects, such as diffusion, adsorption, absorption, and evaporation are also incorporated for realistic stain simulation.;Finally, we explore the extraction of Lagrangian Coherent Structure (LCS), which is often referred to as the skeleton of fluid motion. The LCS structures are often described by ridges of the finite time Lyapunov exponent (FTLE) fields, which describe the extremal stretching of fluid parcels following the flow. We proposed a novel improvement to the ridge marching algorithm, which extract such ridges robustly for the typically noisy FTLE estimates even in well-defined fluid flows. Our results are potentially applicable to visualizing and controlling fluid trajectory patterns. In contrast to current methods for LCS calculation, which are only applicable to flat 2D or 3D domains and sensitive to noise, our ridge extraction is readily applicable to curved surfaces even when they are deforming.;The collection of these computational tools will facilitate generation of realistic and easy to adjust surface fluid animation with various physically plausible effects on surface.
机译:我们探索了在具有不均匀扩散特性的变形表面上视觉上看起来合理的流体模拟的方法。尽管存在用于在表面上进行流体模拟的方法,但是没有太多的研究工作集中在下层表面的运动的影响上,特别是当它不是刚性表面时,例如运动中的针织或编织纺织品。涉及的复杂性使模拟具有挑战性,难以解释通常用于描述扩散,吸收,吸附中的运动和各向异性效应的非惯性局部框架。因此,我们的主要目标是为这种情况提供一种快速,稳定的方法。首先,在准备表面域的材料特性时,我们通过散装材料特性张量描述具有显着特征方向的纺织品,从而降低了复杂性,使用2D均质化技术,可有效地将宏观描述中的微观不均匀特性转变为均匀特性。然后,我们使用标准的纹理映射技术将这些张量映射到曲面网格中的三角形,同时考虑到每个局部切线空间与宏张量的正确特征方向的对齐。我们展示了这种均质化工具直观,灵活且易于调整。第二,为了有效描述变形曲面,我们提供了仅具有角度而不是顶点坐标的曲面新几何图形表示,以减少基础运动的存储量。表面。由于我们的仿真工具严重依赖于较长的3D弯曲三角形网格的长序列,因此值得探索这种有效的表示方式,以通过减少实时仿真过程中的内存访问以及减小文件大小来使我们的工具实用。受基于四面体网格的基于角度的表示的启发,我们使用光谱方法来恢复曲面,该三角形表面同时使用了三角形的角度和网格中相邻三角形之间的二面角。此外,在许多表面变形序列中,通常通常只要在保持三角形内角不变的情况下更新二面角即可。第三,我们提出了一个框架来模拟流体在变形表面上流动的各种影响。我们将模拟器直接应用于曲面网格而不是参数域,而许多现有的模拟方法都需要在曲面上进行参数化。我们进一步证明,由表面运动引起的虚拟力可以以很小的额外成本添加到基于表面的模拟中。这些虚拟力量可以分解为不同的组成部分。仅直线分量和科里奥利分量与我们对局部框架的选择有关。其他效果,例如扩散,吸附,吸收和蒸发,也可以用于逼真的污点模拟。最后,我们探索拉格朗日相干结构(LCS)的提取,该结构通常被称为流体运动的骨架。 LCS结构通常由有限时间Lyapunov指数(FTLE)场的脊线描述,这些脊线描述了流体随流动的极端伸展。我们提出了对脊线行进算法的新颖改进,该算法即使在定义明确的流体流中也能针对典型的嘈杂的FTLE估计稳健地提取此类脊线。我们的结果可能适用于可视化和控制流体轨迹模式。与仅适用于平面2D或3D域并且对噪声敏感的当前LCS计算方法相反,我们的脊线提取即使在曲面变形时也很容易应用于曲面。;这些计算工具的集合将有助于生成逼真且易于调整的表面流体动画,在表面上具有各种可能的物理效果。

著录项

  • 作者

    Wang, Xiaojun.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 89 p.
  • 总页数 89
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号