首页> 外文学位 >Algebraic and Geometric Structure in Machine Learning and Optimization Algorithms
【24h】

Algebraic and Geometric Structure in Machine Learning and Optimization Algorithms

机译:机器学习中的代数和几何结构及优化算法

获取原文
获取原文并翻译 | 示例

摘要

As the scope and importance of machine learning applications widens, it becomes increasingly important to design machine learning and optimization methods that will efficiently and provably obtain desired outputs. We may wish to guarantee that an optimization algorithm quickly converges to a global minimum or that a machine learning model generalizes well to unseen data. We would like ways to better understand how to design and analyze such algorithms so that we can make such guarantees.;In this thesis, we take an algebraic and geometric approach towards understanding machine learning and optimization algorithms. Many optimization problems, whether implicitly or explicitly, contain large amounts of algebraic and geometric structure. This can arise from the feasible region of the problem or from the optimization algorithm being analyzed. A similar phenomenon occurs in machine learning, where there is geometric structure in both the loss function used to evaluate the machine learning algorithm, and in the method used to train the machine. As we develop more complicated models and methods (such as deep neural networks), this structure becomes more and more useful to start understanding important properties of our machine learning and optimization algorithms.;We show that various problems in both areas have algebraic or geometric structure and that we can use this structure to design more accurate and efficient algorithms. We use this approach in four primary areas. First, we show that by using underlying algebraic structure, we can design improved optimization methods for a control-theoretic problem. Second, we use the geometry of algebraic subspaces to address structured clustering problems, even in the presence of missing data. Third, we show that if certain geometric properties hold, we can directly bound the generalization error of learned models of machine learning algorithms. Finally, we show that we can use tools from linear algebra and random matrix theory to design more robust distributed optimization algorithms.
机译:随着机器学习应用程序的范围和重要性的扩大,设计将有效且可证明获得所需输出的机器学习和优化方法变得越来越重要。我们可能希望保证优化算法可以快速收敛到全局最小值,或者机器学习模型可以很好地概括未见数据。我们希望有一些方法可以更好地了解如何设计和分析此类算法,以便能够做出这样的保证。;本文采用代数和几何方法来理解机器学习和优化算法。许多优化问题,无论是隐式的还是显式的,都包含大量的代数和几何结构。这可能是由于问题的可行区域或正在分析的优化算法引起的。在机器学习中会发生类似的现象,其中用于评估机器学习算法的损失函数和用于训练机器的方法中都存在几何结构。随着我们开发更复杂的模型和方法(例如深度神经网络),此结构对于开始理解我们的机器学习和优化算法的重要属性变得越来越有用。;我们证明这两个领域的各种问题都有代数或几何结构并且我们可以使用这种结构来设计更准确,更高效的算法。我们在四个主要方面使用此方法。首先,我们证明了通过使用基础代数结构,我们可以针对控制理论问题设计改进的优化方法。其次,即使在缺少数据的情况下,我们也使用代数子空间的几何形状来解决结构化聚类问题。第三,我们证明如果拥有某些几何属性,我们可以直接限制机器学习算法的学习模型的泛化误差。最后,我们表明可以使用线性代数和随机矩阵理论中的工具来设计更健壮的分布式优化算法。

著录项

  • 作者

    Charles, Zachary.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Applied mathematics.;Statistics.;Computer science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 243 p.
  • 总页数 243
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号