首页> 外文学位 >Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions.
【24h】

Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions.

机译:在非均匀阴影条件下对太阳能光伏阵列进行建模和重新配置。

获取原文
获取原文并翻译 | 示例

摘要

Mass production and use of electricity generated from solar energy has become very common recently because of the environmental threats arising from the production of electricity from fossil fuels and nuclear power. The obvious benefits of solar energy are clean energy production and infinite supply of daylight. The main disadvantage is the high cost. In these photovoltaic systems, semiconductor materials convert the solar light into electrical energy. Current versus voltage characteristics of the solar cells are nonlinear, thus leading to technical control challenges. In the first order approximation, output power of a solar array is proportional to the irradiance of sunlight. However, in many applications, such as solar power plants, building integrated photovoltaic or solar tents, the solar photovoltaic arrays might be illuminated non-uniformly. The cause of non-uniform illumination may be the shadow of clouds, the trees, booms, neighbor's houses, or the shadow of one solar array on the other, etc. This further leads to nonlinearities in characteristics. Because of the nature of the electrical characteristics of solar cells, the maximum power losses are not proportional to the shadow, but magnify nonlinearly [1]. Further, shadows of solar PV array can cause other undesired effects: (1) The power actually generated from the solar PV array is much less than designed. At some systems, the annual losses because of the shadow effects can be reached 10%. Thus, the probability for "loss of load" increases [2]. (2) The local hot spot in the shaded part of the solar PV array can damage the solar cells. The shaded solar cells may be work on the negative voltage region and become a resistive load and absorb power. Bypass diodes are sometimes connected parallel to solar cells to protect them from damage. However, in most cases, just one diode is connected in parallel to group of solar cells [3], and this hidden the potential power output of the array.;This proposed research will focus on the development of an adaptable solar array that is able to optimize power output, reconfigure itself when solar cells are damaged and create controllable output voltages and currents.;This study will be a technological advancement over the existing technology of solar PV. Presently solar arrays are fixed arrays that require external device to control their output. In this research, the solar array will be able to self-reconfigure, leading to the following advantages: (1) Higher efficiency because no external devices are used. (2) Can reach maximum possible output power that is much higher than the maximum power of fixed solar arrays by arranging the solar cells in optimized connections. (3) Elimination of the hot spot effects.;The proposed research has the following goals: First, to create a modeling and computing algorithm, which is able to simulate and analyze the effects of non-uniform changing shadows on the output power of solar PV arrays. Our model will be able to determine the power losses in each solar cell and the collective hot spots of an array. Second, to propose new methods, which are able to predict the performance of solar PV arrays under shadow conditions for long term (days, months, years). Finally, to develop adaptive reconfiguration algorithms to reconfigure connections within solar PV arrays in real time, under shadow conditions, in order to optimize output power.
机译:由于由化石燃料和核能发电产生的环境威胁,近来太阳能的大规模生产和使用已变得非常普遍。太阳能的明显好处是清洁能源的生产和日光的无限供应。主要缺点是成本高。在这些光伏系统中,半导体材料将太阳光转换为电能。太阳能电池的电流与电压特性是非线性的,因此带来了技术控制挑战。在第一阶近似中,太阳能电池阵列的输出功率与太阳光的辐照度成正比。但是,在许多应用中,例如太阳能发电厂,建筑集成光伏或太阳能帐篷,太阳能光伏阵列可能会受到不均匀的照明。照明不均匀的原因可能是云层,树木,吊杆,邻居的房屋的阴影,或一个太阳能电池阵列的阴影,等等。这进一步导致了特性的非线性。由于太阳能电池电气特性的性质,最大功率损耗与阴影不成比例,而是非线性放大[1]。此外,太阳能光伏阵列的阴影还会导致其他不良影响:(1)太阳能光伏阵列实际产生的功率远小于设计的功率。在某些系统上,由于阴影效应而造成的年度损失可以达到10%。因此,“负载损失”的可能性增加了[2]。 (2)太阳能光伏阵列阴影部分的局部热点会损坏太阳能电池。阴影的太阳能电池可以在负电压区域上工作,并成为电阻负载并吸收功率。旁路二极管有时会并联连接至太阳能电池,以保护其免受损坏。然而,在大多数情况下,只有一个二极管并联连接到一组太阳能电池[3],这隐藏了该阵列的潜在功率输出。该拟议的研究将集中于开发一种能够优化功率输出,在太阳能电池损坏时重新配置自身并创建可控的输出电压和电流。该研究将是对现有太阳能PV技术的技术进步。目前,太阳能电池阵列是固定阵列,需要外部设备来控制其输出。在这项研究中,太阳能电池板将能够自我重新配置,从而带来以下优势:(1)效率更高,因为未使用任何外部设备。 (2)通过将太阳能电池布置在优化的连接中,可以达到比固定太阳能电池阵列的最大功率高得多的最大可能输出功率。 (3)消除热点效应。所提出的研究具有以下目的:首先,创建一个建模和计算算法,该算法能够模拟和分析不均匀变化的阴影对太阳能输出功率的影响。光伏阵列。我们的模型将能够确定每个太阳能电池中的功率损耗以及阵列的整体热点。其次,提出新的方法,该方法能够预测长期(几天,几个月,几年)在阴影条件下的太阳能光伏阵列的性能。最后,开发自适应重配置算法以在阴影条件下实时重配置太阳能光伏阵列内的连接,以优化输出功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号