首页> 外文学位 >Time-Dependent Nonlinear Control of Bipedal Robotic Walking
【24h】

Time-Dependent Nonlinear Control of Bipedal Robotic Walking

机译:双足机器人行走的时变非线性控制

获取原文
获取原文并翻译 | 示例

摘要

Although bipedal walking control has been extensively studied for the past forty years, it remains a challenging task. To achieve high-performance bipedal robotic walking, this dissertation studies and investigates control strategies for both fully actuated and underactuated bipedal robots based on nonlinear control theories and formal stability analysis.;Previously, the Hybrid-Zero-Dynamics (HZD) framework, which is a state-based feedback controller design based on the full-order dynamic modeling and the input-output linearization, has successfully realized stable, agile, and efficient bipedal walking for both fully actuated and underactuated bipedal robotic walking. However, the critical issue of achieving high walking versatility has not been fully addressed by the HZD framework. In this dissertation, we propose and develop a time-dependent controller design methodology to achieve not only stable, agile, and efficient but also versatile bipedal walking for fully actuated bipeds. Furthermore, the proposed time-dependent approach can be used to achieve better walking robustness to implementation imperfections for both fully actuated and underactuated bipeds by effectively solving the high-sensitivity issue of the state-based approaches to sensor noises.;In our controller design methodology, the full-order hybrid walking dynamics are first modeled, which consist of both continuous-time dynamics and rigid-body impact dynamics. Then, the desired path/motion for a biped to track is planned, and the output function is designed as the tracking error of the desired path/motion. Based on the full-order model of walking dynamics, the input-output linearization is utilized to synthesize a controller that exponentially drives the output function to zero during continuous phases. Finally, sufficient conditions are developed to evaluate the stability of the hybrid, time-varying closed-loop control system. By enforcing these conditions, stable bipedal walking can be automatically realized, and the desired motion can be satisfactorily followed.;Both full actuation and underactuation are common in bipedal robotic walking. Full actuation occurs when the number of degrees of freedom equals the number of independent actuators while underactuation occurs when the number of degrees of freedom is greater than the number of independent actuators. Because a fully actuated biped can directly control each of its joints, more objectives may be achieved for a fully actuated biped than an underactuated one. In this dissertation, the exponential tracking of a straight-line contour in Cartesian space is achieved for both planar and three-dimensional (3-D) walking, which greatly improves the versatility of fully actuated bipedal robots. To guarantee the closed-loop stability, the first sufficient stability conditions are developed based on the construction of multiple Lyapunov functions.;Underactuated walking is much more difficult to control than fully actuated walking because an underactuated biped cannot directly control each of its joints. In this dissertation, control design of periodic, underactuated walking is investigated, and the first set of sufficient conditions for time-dependent orbitally exponential stabilization is established based on time-dependent nonlinear feedback control. Without modifications, the proposed controller design can be directly applied to both planar and 3-D bipeds that are subject to either underactuation or full actuation.;Extensive computer simulation results validated the proposed time-dependent controller design methodology for bipedal robotic walking. Specifically, three bipedal models were simulated: one was a fully actuated, planar bipedal model with three revolute joints, one was a fully actuated, 3-D bipedal model with nine revolute joints, and one was an underactuated, planar bipedal model with five revolute joints.
机译:尽管在过去的40年中对双足步行控制进行了广泛的研究,但这仍然是一项艰巨的任务。为了实现高性能的双足机器人行走,本文基于非线性控制理论和形式稳定性分析研究和研究了全驱动和欠驱动双足机器人的控制策略。以前,混合零动态(HZD)框架是基于全阶动态建模和输入输出线性化的基于状态的反馈控制器设计,已成功地实现了稳定,敏捷,高效的两足步行,可用于全驱动和欠驱动的两足机器人步行。但是,HZD框架尚未完全解决实现高步行多功能性的关键问题。在本文中,我们提出并开发了一种与时间有关的控制器设计方法,该方法不仅可以实现稳定,敏捷,高效,而且还可以为全驱动双足机器人实现通用的双足步行。此外,通过有效地解决基于状态的传感器噪声方法的高灵敏度问题,所提出的时间相关方法可用于为完全驱动和未驱动Biped的实现缺陷实现更好的行走鲁棒性。 ,首先对全阶混合行走动力学建模,该动力学包含连续时间动力学和刚体碰撞动力学。然后,计划两足动物要跟踪的所需路径/运动,并将输出函数设计为所需路径/运动的跟踪误差。基于行走动力学的全阶模型,输入输出线性化被用于合成一个控制器,该控制器在连续阶段将输出函数指数驱动为零。最后,开发了充分的条件来评估混合时变闭环控制系统的稳定性。通过强制执行这些条件,可以自动实现稳定的双足步行,并且可以令人满意地遵循所需的运动。在双足机器人步行中,完全激活和欠驱动均很常见。当自由度的数量等于独立致动器的数量时,将发生完全致动;而当自由度的数量大于独立致动器的数量时,将发生欠驱动。由于完全驱动的Biped可以直接控制其每个关节,因此与未驱动的Biped相比,完全驱动的Biped可以实现更多的目标。本文针对平面和三维(3-D)行走,实现了笛卡尔空间中直线轮廓的指数跟踪,极大地提高了全动双足机器人的通用性。为了确保闭环稳定性,首先基于多个Lyapunov函数的构造来开发出足够的稳定性条件。欠驱动的步行比完全驱动的步行更难控制,因为欠驱动的两足动物不能直接控制其每个关节。本文研究了周期性,欠驱动步行的控制设计,并基于时间相关的非线性反馈控制,建立了第一套满足时间相关的轨道指数稳定的充分条件。无需修改,所提出的控制器设计就可以直接应用于受到欠驱动或完全致动的平面和3-D两足动物。大量的计算机仿真结果验证了所提出的双足机器人行走的时变控制器设计方法。具体来说,模拟了三个两足模型:一个是具有三个旋转关节的完全驱动的平面两足模型,一个是具有九个旋转关节的完全驱动的3-D两足模型,一个是具有五个旋转的欠驱动的平面两足模型。关节。

著录项

  • 作者

    Gu, Yan.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号