首页> 外文学位 >Robust and Traffic Aware Medium Access Control Mechanisms for Energy-Efficient mm-Wave Wireless Network-on-Chip Architectures
【24h】

Robust and Traffic Aware Medium Access Control Mechanisms for Energy-Efficient mm-Wave Wireless Network-on-Chip Architectures

机译:健壮且具有流量感知能力的毫米波无线片上无线网络媒体访问控制机制

获取原文
获取原文并翻译 | 示例

摘要

To cater to the performance/watt needs, processors with multiple processing cores on the same chip have become the de-facto design choice. In such multicore systems, Network-on-Chip (NoC) serves as a communication infrastructure for data transfer among the cores on the chip. However, conventional metallic interconnect based NoCs are constrained by their long multi-hop latencies and high power consumption, limiting the performance gain in these systems. Among, different alternatives, due to the CMOS compatibility and energy-efficiency, low-latency wireless interconnect operating in the millimeter wave (mm-wave) band is nearer term solution to this multi-hop communication problem. This has led to the recent exploration of millimeter-wave (mm-wave) wireless technologies in wireless NoC architectures (WiNoC).;To realize the mm-wave wireless interconnect in a WiNoC, a wireless interface (WI) equipped with on-chip antenna and transceiver circuit operating at 60GHz frequency range is integrated to the ports of some NoC switches. The WIs are also equipped with a medium access control (MAC) mechanism that ensures a collision free and energy-efficient communication among the WIs located at different parts on the chip. However, due to shrinking feature size and complex integration in CMOS technology, high-density chips like multicore systems are prone to manufacturing defects and dynamic faults during chip operation. Such failures can result in permanently broken wireless links or cause the MAC to malfunction in a WiNoC. Consequently, the energy-efficient communication through the wireless medium will be compromised. Furthermore, the energy efficiency in the wireless channel access is also dependent on the traffic pattern of the applications running on the multicore systems. Due to the bursty and self-similar nature of the NoC traffic patterns, the traffic demand of the WIs can vary both spatially and temporally. Ineffective management of such traffic variation of the WIs, limits the performance and energy benefits of the novel mm-wave interconnect technology. Hence, to utilize the full potential of the novel mm-wave interconnect technology in WiNoCs, design of a simple, fair, robust, and efficient MAC is of paramount importance.;The main goal of this dissertation is to propose the design principles for robust and traffic-aware MAC mechanisms to provide high bandwidth, low latency, and energy-efficient data communication in mm-wave WiNoCs. The proposed solution has two parts. In the first part, we propose the cross-layer design methodology of robust WiNoC architecture that can minimize the effect of permanent failure of the wireless links and recover from transient failures caused by single event upsets (SEU). Then, in the second part, we present a traffic-aware MAC mechanism that can adjust the transmission slots of the WIs based on the traffic demand of the WIs. The proposed MAC is also robust against the failure of the wireless access mechanism. Finally, as future research directions, this idea of traffic awareness is extended throughout the whole NoC by enabling adaptiveness in both wired and wireless interconnection fabric.
机译:为了满足性能/瓦特需求,在同一芯片上具有多个处理内核的处理器已成为事实上的设计选择。在这样的多核系统中,片上网络(NoC)充当通信基础架构,用于在芯片上各核之间进行数据传输。但是,传统的基于金属互连的NoC受其较长的多跳延迟和高功耗的限制,从而限制了这些系统的性能增益。其中,由于CMOS兼容性和能源效率,在不同的替代方案中,在毫米波(mm-wave)频段中运行的低延迟无线互连是解决此多跳通信问题的较近期解决方案。这导致最近对无线NoC架构(WiNoC)中​​的毫米波(mm-wave)无线技术进行了探索。为了在WiNoC中实现毫米波无线互连,需要在芯片上配备无线接口(WI)。在某些NoC交换机的端口上集成了工作在60 GHz频率范围的天线和收发器电路。 WI还配备了媒体访问控制(MAC)机制,可确保位于芯片不同部分的WI之间实现无冲突且节能的通信。但是,由于功能尺寸的缩小和CMOS技术中复杂的集成,诸如多核系统之类的高密度芯片在芯片操作过程中容易出现制造缺陷和动态故障。此类故障可能导致无线链路永久断开或导致MAC在WiNoC中发生故障。因此,将损害通过无线介质进行的节能通信。此外,无线信道访问中的能源效率还取决于在多核系统上运行的应用程序的流量模式。由于NoC流量模式具有突发性和自相似性,因此WI的流量需求可能会在空间和时间上发生变化。 WI的这种流量变化的无效管理限制了新颖的毫米波互连技术的性能和能源优势。因此,要充分利用新型毫米波互连技术在WiNoC中的潜力,设计一个简单,公平,健壮和高效的MAC至关重要。本论文的主要目的是提出鲁棒性的设计原理。和流量感知型MAC机制,可在毫米波WiNoC中提供高带宽,低延迟和高能效的数据通信。提出的解决方案包括两个部分。在第一部分中,我们提出了健壮的WiNoC架构的跨层设计方法,该方法可以最大程度地减少无线链路永久性故障的影响,并从单事件异常(SEU)引起的瞬态故障中恢复。然后,在第二部分中,我们提出了一种流量感知MAC机制,该机制可以根据WI的流量需求来调整WI的传输时隙。所提出的MAC对于无线接入机制的故障也是健壮的。最后,作为未来的研究方向,通过启用有线和无线互连结构中的自适应功能,将流量感知的概念扩展到整个NoC。

著录项

  • 作者

    Mansoor, Naseef.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Computer engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号