首页> 外文学位 >Exploring the Mechanism for the Electrocatalytic Reduction of CO2 to CO and the Industrial Integration of a Bismuth-Based Electrocatalyst
【24h】

Exploring the Mechanism for the Electrocatalytic Reduction of CO2 to CO and the Industrial Integration of a Bismuth-Based Electrocatalyst

机译:探索电催化将CO2还原为CO的机理以及铋基电催化剂的产业整合

获取原文
获取原文并翻译 | 示例

摘要

Global energy demand has historically been provided for by fossil fuels. As energy demand continues to rise in response to increasing population and industrialization, the use in fossil fuels will also rise. This rise is anticipated to have negative impacts on our global environment in the form of environmental risk factors. Therefore, a switch in energy dependency from fossil fuels to clean renewable energy is necessary to mitigate these risk factors. To make this transition, we envision a zero-emission pathway by harnessing energy from the sun in the form of solar fuels. By harnessing solar energy via a photovoltaic, electrons will be provided to reduce CO2 to CO. The well-known Fischer-Tropsch process will then use CO as the C1 feedstock to produce the solar fuels.;For the initial transformation, the Rosenthal Research Lab developed a bismuth carbon monoxide evolving catalyst (Bi-CMEC), prepared by an acid aqueous electrodeposition bath. Its ability to selectively (> 90 %) and efficiently (83 %) electrocatalytically transform CO2 to CO with the incorporation of imidazolium-based ionic liquids (ILs) was demonstrated. Bi relates to the historic Ag and Au cathodes in the ability to selectively evolve CO, but is not impeded by the cost of material when used on an industrial scale.;To further encourage industrial integration of Bi-CMEC and to enhance these impressive metrics, I helped with the development of a 3D-printed flow electrolysis assembly for the electrocatalytic reduction of CO2 to CO. 3D printing allows for rapid and cost effective prototyping with high precision and accuracy. The flow cell is a sealed system which does not require constant operation or system re-optimization. Importantly, the flow cell recycles electrolyte and encourages faster mass transport from the constant flow of fresh electrolyte across the electrode surface. Here, we have modified existing drop casting techniques to screen a slew of inexpensive and commercially available Bi3+ salt precursors. We also took advantage of inexpensive carbon supports to further the likelihood of transitioning this chemistry into industry. Our progress with Bi-CMEC preparation and industrial cell design truly highlights the feasibility of integrating a Bi-based CO2 electrolyzer into industry.;Mechanistic insights for Bi-CMEC to facilitate this transformation were studied with Tafel analysis and MD calculations performed in a collaborative effort with the University of Minnesota and co-workers of the Rosenthal Research Lab. Specifically, Tafel analysis suggested that the rate determining step (RDS) for Bi-CMEC is the first electron transfer (ET) to yield the surface bound CO2•--. MD simulations agreed with the first ET being rate limiting and highlighted the role of surface bound IL and IL in the solution bulk. Upon developing an organic plating procedure, in situ studies were performed which offered additional insight for the catalytic behavior of Bi-CMEC. The organic electrodeposition procedure was general and allowed for materials other than Bi (Sn, Pb, and Sb) to be studied. The ability of these p-block metals to reduce CO2 to CO was explored and ultimately revealed unique electrochemical behaviors. Despite Sb showing poor activity for CO2 reduction, Bi, Sn, and Pb demonstrated high CO selectivity (~80 %) with current densities for CO generation ranging from 5--8 mA/cm 2. While Bi and Sn both showed impressive electrochemical behaviors, Pb demonstrated film passivation and CO2 activation occurred at a larger overpotential. These initial studies inspired curiosity as to why these materials, when prepared in a similar manner, demonstrated unique catalysis.;To understand why Pb becomes passivated, I performed extensive studies on the RDS, electrochemical events, and surface adsorbate interactions for the Bi, Sn, and Pb cathodes. Tafel studies performed on the Pb cathode suggested that an adsorbate forms on the surface to block charge transfer events. Surface studies were subsequently performed to identify the evolution of adsorbates for the Bi, Sn, and Pb cathodes. While Bi and Sn were nearly identical, Pb demonstrated an additional impurity adsorption component. This component was later identified as an imidazolium-carboxylate adduct. This adduct was found to exist both on the surface and in solution for Pb, but was not identified in either medium for Bi or Sn.;Imidazolium-carboxylate is highlighted in the literature to be an essential intermediate for the stabilization of CO2•-- to lower the activation energy of this redox reaction. Because this theory disagrees with our previous experimental results, I performed thorough studies on the adduct itself. Here, direct information on its electrochemical behavior and participation in catalysis were observed. It was revealed that the adduct formation is irreversible, such that it creates a thermodynamic sink upon formation during electrolysis. (Abstract shortened by ProQuest.).
机译:历史上,全球能源需求是由化石燃料提供的。随着人口增长和工业化带来的能源需求持续增长,对化石燃料的使用也将增加。预计这种上升将以环境风险因素的形式对我们的全球环境产生负面影响。因此,有必要将能源依赖性从化石燃料转向清洁的可再生能源,以减轻这些风险因素。为了实现这一转变,我们设想通过利用来自太阳能的形式的太阳能来实现零排放。通过光伏利用太阳能,将提供电子以将CO2还原为CO。然后,著名的费托工艺将使用CO作为C1原料生产太阳能。开发了一种用酸性水电沉积浴制备的铋一氧化碳析出催化剂(Bi-CMEC)。证明了其通过结合咪唑基离子液体(ILs)选择性(> 90%)和有效(83%)电催化将CO2转化为CO的能力。 Bi与历史悠久的Ag和Au阴极具有选择性释放CO的能力有关,但在工业规模上使用时不受材料成本的限制。;为了进一步鼓励Bi-CMEC的工业整合并增强这些令人印象深刻的指标,我协助开发了3D打印的流式电解装置,用于将CO2电催化还原为CO。3D打印可实现快速且经济高效的原型制作,并具有高精度和准确性。流通池是密封的系统,不需要恒定的操作或系统重新优化。重要的是,流通池可循环利用电解质,并促进新鲜电解质不断流过电极表面,从而实现更快的质量传输。在这里,我们已经修改了现有的滴铸技术,以筛选出一系列廉价且可商购的Bi3 +盐前体。我们还利用了廉价的碳载体,进一步提高了将这种化学物质转化为工业的可能性。我们在Bi-CMEC制备和工业电池设计方面的进展真正突显了将Bi基CO2电解槽整合到工业中的可行性。;通过Tafel分析和协同合作进行的MD计算,研究了Bi-CMEC促进这一转变的机理。与明尼苏达大学和罗森塔尔研究实验室的同事合作。具体而言,Tafel分析表明,Bi-CMEC的速率确定步骤(RDS)是产生表面结合的CO2•-的第一个电子转移(ET)。 MD模拟同意第一个ET是速率限制,并强调了表面结合IL和IL在溶液体积中的作用。在开发有机电镀程序后,进行了原位研究,为Bi-CMEC的催化行为提供了更多的见识。一般采用有机电沉积程序,可以研究除Bi(Sn,Pb和Sb)以外的材料。探索了这些p嵌段金属将CO2还原为CO的能力,并最终揭示出独特的电化学行为。尽管Sb表现出不良的CO2还原活性,但是Bi,Sn和Pb表现出高的CO选择性(〜80%),CO产生的电流密度范围为5--8 mA / cm2。而Bi和Sn均表现出令人印象深刻的电化学行为。 ,Pb证明了膜钝化和CO2活化在较大的超电势下发生。这些最初的研究激发了人们对为什么以类似方式制备这些材料时表现出独特催化作用的好奇心。为了了解Pb为何被钝化,我对RDS,电化学事件以及Bi,Sn的表面吸附物相互作用进行了广泛的研究。和铅阴极。在Pb阴极上进行的Tafel研究表明,在表面上形成了吸附物以阻止电荷转移。随后进行了表面研究,以确定Bi,Sn和Pb阴极吸附物的演变。尽管Bi和Sn几乎相同,但Pb表现出了额外的杂质吸附成分。后来将该成分鉴定为咪唑羧酸盐加合物。发现该加合物既存在于表面,也存在于铅的溶液中,但在Bi或Sn的介质中均未发现。在文献中强调指出,羧酸咪唑鎓盐是稳定CO2的重要中间体。降低该氧化还原反应的活化能。因为该理论与我们以前的实验结果不符,所以我对加合物本身进行了深入的研究。在这里,观察到有关其电化学行为和参与催化的直接信息。揭示了加合物的形成是不可逆的,使得其在电解过程中在形成时产生热力学吸收。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Velardo, Stephanie M.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemistry.;Organic chemistry.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 282 p.
  • 总页数 282
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号