首页> 外文学位 >Gypsum, Calcite, and Dolomite Caprock Fabrics and Geochemistry from the Gypsum Valley Salt Diapir, Paradox Basin, Southwestern Colorado
【24h】

Gypsum, Calcite, and Dolomite Caprock Fabrics and Geochemistry from the Gypsum Valley Salt Diapir, Paradox Basin, Southwestern Colorado

机译:西南科罗拉多州悖论盆地石膏谷盐底辟的石膏,方解石和白云岩盖层织物及地球化学

获取原文
获取原文并翻译 | 示例

摘要

Caprocks are found on top of or in a lateral position relative to salt diapirs. The caprocks predominantly comprise sulfate minerals such as anhydrite or gypsum, which presumably accreted during the dissolution of salt from evaporite sediments. In some cases, the sulfate minerals are replaced by carbonate minerals, referred to as 'carbonate caprock'. Carbonate caprocks associated with salt diapirs are important because they can act as reservoirs or conduits for hydrocarbons, and because they can be easily misidentified as carbonate lithologies belonging to the stratigraphy of the sedimentary sequences adjacent to the diapir, which can jeopardize the accurate interpretation of seismic profiles. Today's understanding of caprocks is based on observations from salt diapirs found along the US Gulf Coast salt diapir province, home to the famous Spindletop oil field; whereas carbonate caprocks from another salt diapir province in the United States, the Paradox Basin, have been hardly recognized, and in many cases misinterpreted as part of the 'normal stratigraphy'.;At one of the salt walls exposed in Gypsum Valley, Paradox Basin in Southwestern Colorado, abundant and well-exposed carbonate caprock was found in an area referred to as Mary Jane Draw. The carbonate and adjacent gypsum caprock display an amazing richness in lithologies, including micritic calcitic and dolomitic caprocks that are silicified to various degrees, and display an astonishing diversity in caprock fabrics, including massive, brecciated, zebraic, and finely laminated benches. In order to enable caprock identification, and to facilitate communication between caprock researchers, this richness in fabrics calls for a comprehensive caprock classification scheme, and first steps towards such unified nomenclature are reported in this study.;Light carbon isotope signatures of dolomitic and calcitic caprock indicate that hydrocarbon oxidation likely contributed to the formation of either carbonate caprock lithology; whereas the oxygen isotope signature did not provide conclusive evidence for calcite or dolomite as primary or secondary mineral phase. However, the relatively higher abundance of micritic dolomite compared to calcite indicates that dolomite, or a dolomite-precursor, must have been an early mineral phase. The oxidation of the hydrocarbons was likely tied to microbial sulfate reduction. However, all of the classical signatures for this process, such as pyrite, native sulfur or heavy sulfur and oxygen isotope signatures of sulfate associated with carbonate caprock are absent. The only geochemical fingerprint for microbial sulfate reduction is a high content of isotopically light sulfur in organic matter extracted from the carbonate caprock.;These observations can be explained by a carbonate caprock formation at the Gypsum Valley salt diapir as the result of a multi-stage process involving oxidation of hydrocarbons coupled to microbial sulfate reduction in a system that was open to fluid flow. The fluid flow provided magnesium and silica, enabling the precipitation of primary dolomite and silicification, while removing sulfide and sulfate. Waxing and waning supply with fluids may also have triggered phase transitions between anhydrite and gypsum, causing rock deformation, which explains the amazing richness and diversity in caprock fabrics found in Gypsum Valley. As such, the carbonate caprock at Gypsum Valley constitutes the 'open-system' end member of geochemical settings that are conducive to carbonate caprock formation.
机译:盖层被发现在盐底壳的顶部或相对于盐底壳的横向位置。盖层主要包含硫酸盐矿物,如硬石膏或石膏,据推测在盐从蒸发岩沉积物中溶解期间会积聚。在某些情况下,硫酸盐矿物被碳酸盐矿物代替,被称为“碳酸盐盖岩”。与盐底物有关的碳酸盐岩盖层很重要,因为它们可以充当碳氢化合物的储集层或管道,并且因为它们很容易被误认为是碳酸盐岩岩性,属于与底辟岩相邻的沉积层序地层,这可能会影响对地震的准确解释。个人资料。今天对盖层的了解是基于在美国墨西哥湾沿岸盐底蕴省(著名的Spindletop油田所在地)发现的盐底壳的观测结果。然而,来自美国另一个盐底辟省的悖论盆地的碳酸盐岩层却鲜为人知,在许多情况下被误认为是“正常地层”的一部分。在科罗拉多州西南部,一个被称为玛丽·简·提(Mary Jane Draw)的地区发现了大量且暴露良好的碳酸盐岩盖层。碳酸盐岩和相邻的石膏盖层在岩性上显示出惊人的丰富性,包括微粉化的钙硅质和白云质盖层,并且在盖层织物中表现出惊人的多样性,包括块状,角状,斑马状和精细层压的板凳。为了能够识别盖层岩,并促进盖层岩研究者之间的交流,这种丰富的织物要求采用全面的盖层岩层分类方案,并且本研究报告了朝着这种统一命名法迈出的第一步。;白云质和钙质盖层岩的轻碳同位素特征表明碳氢化合物氧化可能有助于碳酸盐岩盖层岩性的形成;而氧同位素特征并未提供方解石或白云石作为主要或次要矿物相的确凿证据。但是,与方解石相比,变质白云岩的丰度相对较高,表明白云岩或白云岩前体一定是早期的矿物相。碳氢化合物的氧化可能与微生物硫酸盐还原有关。但是,没有此过程的所有经典特征,如黄铁矿,天然硫或重硫和与碳酸盐盖层有关的硫酸盐的氧同位素特征。减少微生物硫酸盐作用的唯一地球化学指纹图谱是从碳酸盐盖层提取的有机质中高含量的同位素轻硫;这些观察结果可以通过多阶段的结果在石膏谷盐底辟形成碳酸盐盖层来解释。该过程涉及碳氢化合物的氧化,以及在对流体开放的系统中微生物硫酸盐的还原。流体提供了镁和二氧化硅,使初级白云石沉淀并硅化,同时去除了硫化物和硫酸盐。打蜡和液体供应的减少也可能触发了硬石膏与石膏之间的相变,导致岩石变形,这解释了在石膏谷发现的盖层织物的惊人丰富性和多样性。因此,石膏谷的碳酸盐盖层构成了地球化学环境的“开放系统”末端成员,有利于碳酸盐盖层的形成。

著录项

  • 作者

    Lerer, Kevin.;

  • 作者单位

    The University of Texas at El Paso.;

  • 授予单位 The University of Texas at El Paso.;
  • 学科 Geology.;Geochemistry.;Petroleum geology.
  • 学位 M.S.
  • 年度 2017
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 语言学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号