首页> 外文学位 >Polyglycolic acid surface modification by bi-functional peptide to improve endothelial cell adhesion and biological functions.
【24h】

Polyglycolic acid surface modification by bi-functional peptide to improve endothelial cell adhesion and biological functions.

机译:通过双功能肽对聚乙醇酸进行表面修饰,以改善内皮细胞的粘附性和生物学功能。

获取原文
获取原文并翻译 | 示例

摘要

Bioresorbable scaffolds such as polyglycolic acid are employed in a number of clinical and tissue engineering applications, because they can be remodeled to form native tissue over time. However, polyglycolic acid does not attract endothelial cell adhesion, and therefore must be chemically treated to enable cells to bind and grow on its surface. The goal of this research is to investigate a novel approach to modify PGA surfaces to enhance initial endothelial cell attachment and spreading and increase initial cell retention under physiological shear stress on PGA surfaces.;To achieve this goal, we designed a hetero-bifunctional peptide linker, termed "interfacial biomaterial". This peptide couples a surface affinity domain with a biologically active domain that provides appropriate biological cues and promotes desired cellular behaviors on the modified surfaces. Surface affinity peptides for PGA were selected by screening phage display libraries with a direct-infection procedure developed in this project. One such polyglycolic acid affinity domain then was coupled to the integrin binding domain, arginine-glycine-aspartic acid to build a chemically synthesized bimodular 27 amino acid peptide. This peptide mediated interactions between polyglycolic acid and integrin receptors on endothelial cells. The adhesion constant, surface thickness, and viscoelastic properties of this peptide on polyglycolic acid surfaces were characterized. Cell binding studies were conducted to examine the peptide influence of cell adhesion, spreading, and cytoskeletal re-organizations under static conditions. Endothelial cell surface integrin studies proved the peptide-endothelial cell interactions were through integrin mediated adhesion. Finally, initial cell retention on interfacial biomaterial-treated polyglycolic acid surfaces was studied to examine the peptide's ability to retain human endothelial cells on PGA surfaces under physiological shear stress. Significantly higher shear stress, 67 dyn/cm2, was needed to achieve 90% cell retention on spin-coated polyglycolic acid surfaces modified by this peptide than the same retention on unmodified surfaces, 4 dyn/cm2, or fibronectin-coated polyglycolic acid surfaces, 19 dyn/cm2. This interfacial biomaterial mediated adhesion of endothelial cells on PGA was in an integrin-dependent manner. The studies also demonstrated that the interaction particular between alpha vbeta3 and the peptide was crucial at high shear stress on interfacial biomaterial modified polyglycolic acid surfaces.;This research demonstrates that engineered peptides can enhance human endothelial cell adhesion, spreading, and initial retention onto PGA surfaces by eliciting biological behaviors normally associated with much larger structures such as the extracellular matrix, and also verify the effectiveness of bifunctional peptide approach.
机译:可生物吸收的支架(例如聚乙醇酸)被用于许多临床和组织工程应用中,因为随着时间的推移它们可以被重塑以形成天然组织。但是,聚乙醇酸不会吸引内皮细胞粘附,因此必须进行化学处理以使细胞结合并在其表面生长。这项研究的目的是研究一种新颖的方法来修饰PGA表面,以在PGA表面上的生理剪切应力下增强初始内皮细胞的附着和扩散并增加初始细胞的保留。;为了实现这一目标,我们设计了一种异双功能肽接头被称为“界面生物材料”。该肽使表面亲和结构域与生物活性结构域偶联,该生物活性结构域提供适当的生物学提示并促进修饰表面上所需的细胞行为。通过使用本项目开发的直接感染程序筛选噬菌体展示文库,选择了PGA的表面亲和肽。然后将一个这样的聚乙醇酸亲和结构域与整联蛋白结合结构域精氨酸-甘氨酸-天冬氨酸偶联以构建化学合成的双模块27氨基酸肽。该肽介导了聚乙醇酸与内皮细胞上整联蛋白受体之间的相互作用。表征了该肽在聚乙醇酸表面上的粘附常数,表面厚度和粘弹性。进行细胞结合研究以检查肽在静态条件下对细胞黏附,扩散和细胞骨架重组的影响。内皮细胞表面整合素研究证明,肽-内皮细胞相互作用是通过整合素介导的。最后,对界面生物材料处理过的聚乙醇酸表面上的初始细胞保留进行了研究,以检查该肽在生理剪切应力下将人内皮细胞保留在PGA表面上的能力。要在此肽修饰的旋涂聚乙醇酸表面上实现90%的细胞保留,需要比未修饰的表面上4 dyn / cm2或纤连蛋白涂层的聚乙醇酸表面上更高的剪切应力,达到67 dyn / cm2, 19 dyn / cm2。这种界面生物材料介导的内皮细胞在PGA上的粘附是以整合素依赖性的方式进行的。研究还表明,在界面生物材料修饰的聚乙醇酸表面上的高剪切应力下,αvbeta3与该肽之间的相互作用特别重要;该研究表明,工程改造的肽可以增强人内皮细胞的粘附,扩散以及在PGA表面上的初步保留。通过引发通常与更大的结构(如细胞外基质)相关的生物学行为,并验证了双功能肽方法的有效性。

著录项

  • 作者

    Huang, Xin.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号