首页> 外文学位 >3D Modeling and Characterization of Hydraulic Fracture Efficiency Integrated with 4D/9C Time-Lapse Seismic Interpretations in the Niobrara Formation, Wattenberg Field, Denver Basin
【24h】

3D Modeling and Characterization of Hydraulic Fracture Efficiency Integrated with 4D/9C Time-Lapse Seismic Interpretations in the Niobrara Formation, Wattenberg Field, Denver Basin

机译:丹佛盆地沃滕贝格油田尼奥布拉拉组水力压裂效率的3D建模和特征与4D / 9C时移地震解释的集成

获取原文
获取原文并翻译 | 示例

摘要

Hydrocarbon recovery rates within the Niobrara Shale are estimated as low as 2--8%. These recovery rates are controlled by the ability to effectively hydraulic fracture stimulate the reservoir using multistage horizontal wells. Subsequent to any mechanical issues that affect production from lateral wells, the variability in production performance and reserve recovery along multistage lateral shale wells is controlled by the reservoir heterogeneity and its consequent effect on hydraulic fracture stimulation efficiency. Using identical stimulation designs on a number of wells that are as close as 600ft apart can yield variable production and recovery rates due to inefficiencies in hydraulic fracture stimulation that result from the variability in elastic rock properties and in-situ stress conditions.;As a means for examining the effect of the geological heterogeneity on hydraulic fracturing and production within the Niobrara Formation, a 3D geomechanical model is derived using geostatistical methods and volumetric calculations as an input to hydraulic fracture stimulation. The 3D geomechanical model incorporates the faults, lithological facies changes and lateral variation in reservoir properties and elastic rock properties that best represent the static reservoir conditions pre-hydraulic fracturing. Using a 3D numerical reservoir simulator, a hydraulic fracture predictive model is generated and calibrated to field diagnostic measurements (DFIT) and observations (microseismic and 4D/9C multicomponent time-lapse seismic). By incorporating the geological heterogeneity into the 3D hydraulic fracture simulation, a more representative response is generated that demonstrate the variability in hydraulic fracturing efficiency along the lateral wells that will inevitability influence production performance.;Based on the 3D hydraulic fracture simulation results, integrated with microseismic observations and 4D/9C time-lapse seismic analysis (post-hydraulic fracturing & post production), the variability in production performance within the Niobrara Shale wells is shown to significantly be affected by the lateral variability in reservoir quality, well and stage positioning relative to the target interval, and the relative completion efficiency. The variation in reservoir properties, faults, rock strength parameters, and in-situ stress conditions are shown to influence and control the hydraulic fracturing geometry and stimulation efficiency resulting in complex and isolated induced fracture geometries to form within the reservoir. This consequently impacts the effective drainage areas, production performance and recovery rates from inefficiently stimulated horizontal wells.;The 3D simulation results coupled with the 4D seismic interpretations illustrate that there is still room for improvement to be made in optimizing well spacing and hydraulic fracturing efficiency within the Niobrara Formation. Integrated analysis show that the Niobrara reservoir is not uniformly stimulated. The vertical and lateral variability in rock properties control the hydraulic fracturing efficiency and geometry. Better production is also correlated to higher fracture conductivity. 4D seismic interpretation is also shown to be essential for the validation and calibration hydraulic fracture simulation models. The hydraulic fracture modeling also demonstrations that there is bypassed pay in the Niobrara B chalk resulting from initial Niobrara C chalk stimulation treatments. Forward modeling also shows that low pressure intervals within the Niobrara reservoir influence hydraulic fracturing and infill drilling during field development.
机译:Niobrara页岩内的烃采收率估计低至2--8%。通过使用多级水平井有效地水力压裂刺激储层的能力来控制这些采收率。在任何影响到侧井生产的机械问题之后,多级水平页岩井的生产性能和储量恢复的可变性都受到储层非均质性及其对水力压裂增产效率的影响。由于弹性岩石特性和原地应力条件的变化导致水力压裂增产效率低下,因此在相距600英尺的多口井上使用相同的增产设计会产生可变的产量和采收率。为了检查地质异质性对Niobrara组内水力压裂和生产的影响,使用地统计学方法和体积计算作为水力压裂增产的输入,得出了3D地质力学模型。 3D地质力学模型结合了断层,岩相变化以及储层特性和弹性岩石特性的侧向变化,最能代表静态水力压裂前的静态储层条件。使用3D数值油藏模拟器,将生成液压裂缝预测模型,并将其校准以进行现场诊断测量(DFIT)和观测(微地震和4D / 9C多分量时移地震)。通过将地质异质性纳入3D水力压裂模拟中,产生了更具代表性的响应,表明了沿侧井的水力压裂效率的变化将不可避免地影响生产性能。基于3D水力压裂模拟结果,并结合了微地震观测和4D / 9C时移地震分析(水力压裂和生产后),表明Niobrara页岩井内生产性能的变化受到储层质量,井和阶段定位相对于水平变化的显着影响。目标间隔和相对完成效率。储层性质,断层,岩石强度参数和原地应力条件的变化被显示为影响和控制水力压裂几何形状和增产效率,从而导致在储层内形成复杂且孤立的诱导裂缝几何形状。因此,这会影响有效的排水面积,生产效率以及低效率增产水平井的采收率。; 3D模拟结果与4D地震解释相结合,表明在优化井距和水力压裂效率方面仍有待改进的空间尼奥布拉拉组。综合分析表明,Niobrara储层的增产不均匀。岩石特性的垂直和横向变化控制着水力压裂效率和几何形状。更好的产量还与更高的裂缝传导率相关。还显示了4D地震解释对于水力压裂模拟模型的验证和校准至关重要。水力压裂模型还表明,最初的Niobrara C白垩增产措施导致Niobrara B白垩绕过支付。前向建模还显示,Niobrara油藏内的低压层段会影响油田开发过程中的水力压裂和填充钻井。

著录项

  • 作者

    Alfataierge, Ahmed.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Geophysical engineering.;Petroleum engineering.;Engineering.
  • 学位 M.S.
  • 年度 2017
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号