首页> 外文学位 >Visible-Light-Active Semiconductor Heterojunctions for Enhanced Photocatalytic Activity
【24h】

Visible-Light-Active Semiconductor Heterojunctions for Enhanced Photocatalytic Activity

机译:可见光活性半导体异质结增强了光催化活性

获取原文
获取原文并翻译 | 示例

摘要

A clean and sustainable energy source is a basic requirement for addressing the current increase in global energy demand and environmental issues. Because of its potential for solving current energy and environmental problems, semiconductor-based photocatalysis has received tremendous attention in the last few decades. A significant number of studies have been recently reported on the development of new photocatalytic materials, modification of existing materials to enhance light harvesting, and increasing the number of active sites in order to buttress photocatalytic activity. In a semiconductor photocatalytic system, photo--induced electron-hole pairs are produced when a photocatalyst is illuminated by light with frequencies larger than that of its band gap (h&ngr; ≥ Eg). The resulting photo-excited charge carriers can either recombine with no activity or migrate to the surface of the semiconductor without recombination, where they can be involved in redox processes. The photocatalytic efficiency depends on the number of charge carriers taking part in the redox reactions and on the lifetime of the electron-hole pairs generated by the photoexcitation. High recombination of photo excited charge carriers and limited efficiency under the visible light are the two limiting factors in the development of efficient semiconductor-based photocatalysts.;Many strategies have been developed in semiconductor photocatalysis to overcome these drawbacks. Amongst these strategies, heterojunction formation by using two or more semiconductor catalysts is a promising approach to achieve enhanced visible light induced photocatalysis by reducing the photogenerated electron-hole pair recombination. In this study, several visible light active heterojunctions containing two different semiconductors with suitable band gaps and band positions were fabricated, and their photocatalytic activity was tested for hydrogen production from water reduction or environmental remediation.
机译:清洁可持续的能源是解决当前全球能源需求和环境问题不断增长的基本要求。基于半导体的光催化技术由于具有解决当前能源和环境问题的潜力,因此在过去几十年中受到了极大的关注。最近已经报道了许多研究,涉及新的光催化材料的开发,对现有材料的改性以增强光收集以及增加活性位点的数量以支持光催化活性。在半导体光催化系统中,当光催化剂的光频率大于其带隙(h&ngr;≥Eg)的光时,会产生光致电子-空穴对。所得的光激发电荷载流子可以无活性地复合,也可以在没有复合的情况下迁移到半导体表面,在复合时它们可能参与氧化还原过程。光催化效率取决于参与氧化还原反应的电荷载流子的数量以及由光激发产生的电子-空穴对的寿命。光激发电荷载流子的高重组以及可见光下的有限效率是开发高效的基于半导体的光催化剂的两个限制因素。半导体光催化中已经开发了许多策略来克服这些缺点。在这些策略中,通过使用两种或更多种半导体催化剂形成异质结是一种有希望的方法,可通过减少光生电子-空穴对的重组来实现增强的可见光诱导的光催化作用。在这项研究中,制造了包含两种具有合适带隙和能带位置的不同半导体的可见光活性异质结,并测试了它们的光催化活性对减水或环境修复产生的氢的影响。

著录项

  • 作者

    Adhikari, Shiba P.;

  • 作者单位

    Wake Forest University.;

  • 授予单位 Wake Forest University.;
  • 学科 Chemistry.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 283 p.
  • 总页数 283
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号