首页> 外文学位 >Phonon conductivity metrics for compact, linked-cage, layered, and filled-cage crystals, using ab initio, molecular dynamics and Boltzmann transport treatments.
【24h】

Phonon conductivity metrics for compact, linked-cage, layered, and filled-cage crystals, using ab initio, molecular dynamics and Boltzmann transport treatments.

机译:使用从头算,分子动力学和玻尔兹曼输运处理技术,可测量紧凑,链接笼式,分层和填充笼式晶体的声子电导率。

获取原文
获取原文并翻译 | 示例

摘要

Atomic-level thermal transport in compact, layered, linked-cage, and filled-cage crystals is investigated using a multiscale approach, combines the ab initio calculation, molecular dynamics (MD), Boltzman transport equations (BTE), and the kinetic theory. These materials are of great interests in energy storage, transport, and conversion. The structural metrics of phonon conductivity of these crystals are then explored.;An atomic structure-based model is developed for the understanding the relationship between the atomic structure and phonon transport in compact crystals at high temperatures. The elemental electronegativity, element mass, and the arrangement of bonds are found to be the dominant factors to determine the phonon conductivity.;As an example of linked-cage crystals, the phonon conductivity of MOF-5 is investigated over a wide temperature range using MD simulations and the Green-Kubo method. The temperature dependence of the thermal conductivity of MOF-5 is found to be weak at high temperatures, which results from the suppression of the long-range acoustic phonon transport by the special linked-cage structure. The mean free path of the majority of phonons in MOF-5 is limited by the cage size.;The phonon and electron transport in layered Bi2Te3 structure are investigated using the first-principle calculations, MD, and BTE. Strong anisotropy has been found for both phonon and electron transport due to the special layered structure. The long-range acoustic phonons dominate the phonon transport with a strong temperature and direction dependence. Temperature dependence of the energy gap and appropriate modelling of relaxation times are found to be important for the prediction of the electrical transport in the intrinsic regime. The scattering by the acoustic, optical, and polar-optical phonons are found to dominate the electron transport.;For filled skutterudite structure, strong coupling between the filler and the host is found, which contradicts the traditional "rattler" concept. The interatomic bonds of the host are significantly affected by the filler. It is shown that without changing the interatomic potentials for the host, the filler itself can not result in a lower phonon conductivity for the filled structure. It is also found that the behavior of partially-filled skutterudites can be better understood by treating the partially-filled structure as a solid solution of the empty structure and fully-filled structure.;The combination of theoretical-analysis methods used in this work, provides for comparative insight into the role of atomic structure on the phonon transport in a variety of crystals used in energy storage, transport, and conversion.
机译:使用多尺度方法研究了紧凑,分层,链接笼式和填充笼式晶体中的原子级热传输,结合了从头计算,分子动力学(MD),玻尔兹曼输运方程(BTE)和动力学理论。这些材料在储能,运输和转换方面具有重大意义。然后研究了这些晶体的声子电导率的结构指标。;建立了基于原子结构的模型,以了解高温下致密晶体中原子结构与声子传输之间的关系。发现元素电负性,元素质量和键的排列是决定声子电导率的主要因素。作为连接笼式晶体的一个例子,MOF-5的声子电导率在宽温度范围内使用MD模拟和Green-Kubo方法。发现在高温下,MOF-5的导热系数对温度的依赖性较弱,这是由于特殊的链笼结构抑制了远距离声子的声子传输。 MOF-5中大多数声子的平均自由程受笼尺寸的限制。;使用第一性原理,MD和BTE研究层状Bi2Te3结构中的声子和电子传输。由于特殊的分层结构,已发现声子和电子传输都具有强各向异性。远程声子在温度和方向上具有很强的依赖性,主导着声子的传输。发现能隙的温度依赖性和弛豫时间的适当模型对于预测本征态中的电传输是重要的。发现声子,光学声子和极性光学声子的散射占电子传输的主导地位。对于填充的方钴矿结构,发现了填料与主体之间的强耦合,这与传统的“ rat子手”概念相矛盾。主体的原子间键受到填料的显着影响。已表明,在不改变主体的原子间电势的情况下,填料本身不会导致填充结构的声子电导率降低。还发现通过将部分填充的结构视为空结构和完全填充的结构的固溶体,可以更好地理解部分填充的方钴矿的行为。提供了对能量存储,传输和转换中使用的各种晶体中原子结构在声子传输中的作用的比较见解。

著录项

  • 作者

    Huang, Baoling.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号