首页> 外文学位 >Semi-supervised learning with multiple views.
【24h】

Semi-supervised learning with multiple views.

机译:具有多个视图的半监督学习。

获取原文
获取原文并翻译 | 示例

摘要

In semi-supervised learning, we receive training data comprising labeled points and unlabeled points, and we search for a target function that maps new unlabeled points to their appropriate labels. In the co-regularized least squares (CoRLS) algorithm for semi-supervised learning, we assume that the target function is well-approximated by some function in each of two function classes. We search for a function in each class that performs well on the labeled training data, and we restrict our search space to those pairs of functions, one from each class, whose predictions agree on the unlabeled data. By restricting the search space, we potentially get improved generalization performance for the chosen functions. Our first main contribution is a precise characterization of the size, in terms of Rademacher complexity, of the agreement-constrained search space. We find that the agreement constraint reduces the Rademacher complexity by an amount that depends on the "distance" between the function classes, as measured by a data-dependent metric. Experimentally, we find that the amount of reduction in complexity introduced by the agreement constraint correlates with the amount of improvement that the constraint gives in the CoRLS algorithm.;We next present a new framework for multi-view learning called multi-view point cloud regularization (MVPCR), which has both CoRLS and the popular "manifold regularization" algorithms as special cases. MVPCR is initially formulated as an optimization problem over multiple reproducing kernel Hilbert spaces (RKHSs), where the objective function involves both the labeled and unlabeled data. Our second main result is the construction of a single RKHS, with a data-dependent norm, that reduces the original optimization problem to a supervised learning problem in a single RKHS. Using the multi-view kernel corresponding to this new RKHS, we can easily convert any standard supervised kernel method into a semi-supervised, multi-view method. The multi-view kernel also allows us to refine our CoRLS generalization bound using localized Rademacher complexity theory. As a practical application of our new framework, we present the manifold co-regularization algorithm, which leads to empirical improvements over manifold regularization on several semi-supervised tasks.
机译:在半监督学习中,我们接收包含标记点和未标记点的训练数据,并搜索将新的未标记点映射到其适当标签的目标函数。在用于半监督学习的共正则化最小二乘(CoRLS)算法中,我们假设目标函数与两个函数类中的每个函数都很好地近似。我们在每个类别中搜索一个对标记的训练数据表现良好的函数,并且将搜索空间限制为这些函数对,即每个类别中的一对函数,其预测与未标记的数据相符。通过限制搜索空间,我们可以为所选函数获得更好的泛化性能。我们的第一个主要贡献是根据Rademacher复杂度精确描述协议受限搜索空间的大小。我们发现,协议约束将Rademacher复杂度降低了一个数量,该数量取决于函数类之间的“距离”,这取决于数据相关度量。通过实验,我们发现协议约束引入的复杂度降低量与CoRLS算法中约束所带来的改进量有关。;接下来,我们提出了一种用于多视图学习的新框架,称为多视图点云正则化(MVPCR),它具有CoRLS和流行的“歧管正则化”算法作为特例。 MVPCR最初被公式化为多个复制内核希尔伯特空间(RKHS)上的优化问题,其中目标函数涉及标记和未标记的数据。我们的第二个主要结果是构造了具有数据依赖规范的单个RKHS,它将原始优化问题简化为单个RKHS中的监督学习问题。使用对应于此新RKHS的多视图内核,我们可以轻松地将任何标准的受监督内核方法转换为半监督,多视图方法。多视图内核还允许我们使用局部Rademacher复杂度理论来完善CoRLS泛化范围。作为我们新框架的实际应用,我们提出了流形共正则化算法,该算法导致在几个半监督任务上对流形正则化的经验改进。

著录项

  • 作者

    Rosenberg, David Stuart.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Statistics.;Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 统计学;人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号