首页> 外文学位 >A comparative analysis of control techniques for formation flying spacecraft in an Earth/Moon-Sun L(2)-centered lissajous orbit .
【24h】

A comparative analysis of control techniques for formation flying spacecraft in an Earth/Moon-Sun L(2)-centered lissajous orbit .

机译:以地心/太阳L(2)为中心的利萨霍轨道编队飞行航天器控制技术的比较分析。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, several control techniques are applied to an occulter satellite for a given formation flying mission. This research is in collaboration with the Flight Dynamics Analysis branch at the NASA Goddard Space Flight Center in Greenbelt, Maryland. The spacecraft is part of a leader-follower configuration which orbits about the Earth/Moon-Sun L2 libration point in a lissajous orbit. A controller is required to maintain a distance of 50,000 km between the occulter and the leader satellite in the radial direction with respect to the orbit. The occulter is allowed a tolerance range of 10 m within the "shadow" of the leader. In addition, the controller must also minimize the fuel usage (Deltav) needed to maintain the occulter's trajectory.;The spacecraft model follows the equations of motion defined by the circular restricted three body problem (CR3BP), where the primary bodies are defined to be the Earth/Moon system and the Sun. The dynamic model also incorporates thruster errors and misalignments, orbital sensor noise, environmental perturbations and disturbances, and additional modeling errors/uncertainties.;The control techniques analyzed in this paper consist of several linear (PID, Linear Quadratic Regulator, and Hinfinity) and one nonlinear controller (Sliding Mode Control). All control techniques are compared based on the overall minimization of trajectory error and fuel usage, ease of implementation, and robustness against disturbances and perturbations such as solar radiation pressure and thruster misalignments.;The results of this research show that of the control techniques analyzed, the Linear Quadratic Regulator (LQR) and Sliding Mode Control (SMC) satisfy the mission requirements. While LQR uses less fuel to satisfy given mission requirements, the SMC would also be a suitable choice of control if a mission weighted accuracy over fuel usage.
机译:本文针对给定的编队飞行任务,将几种控制技术应用于隐匿卫星。这项研究与位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的飞行动力学分析部门合作。该航天器是前导跟随器构型的一部分,该构架绕着李萨约轨道中的地球/月球-太阳L2释放点旋转。要求控制器在相对于轨道的径向方向上,使隐匿者与引导卫星之间保持50,000 km的距离。隐匿者在领导者的“阴影”内的公差范围为10 m。此外,控制器还必须最小化维持隐匿者轨迹所需的燃料使用量(Deltav).;航天器模型遵循由圆形受限三体问题(CR3BP)定义的运动方程,其中将原始主体定义为地球/月球系统和太阳。动态模型还包含推进器误差和失准,轨道传感器噪声,环境扰动和干扰以及其他建模误差/不确定性。本文分析的控制技术包括几种线性(PID,线性二次调节器和Hinfinity)和一种非线性控制器(滑模控制)。比较所有控制技术是基于总体上将轨迹误差和燃料使用最小化,易于实施,以及对干扰和扰动(如太阳辐射压力和推进器未对准)的鲁棒性。研究结果表明,对这些控制技术进行了分析,线性二次调节器(LQR)和滑模控制(SMC)满足任务要求。虽然LQR使用较少的燃料来满足给定的任务要求,但如果任务的加权精度超过燃料使用量,SMC也将是一种合适的控制选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号