首页> 外文学位 >Linking paleobiological patterns across geographic scales: An example using Upper Mississippian fossil assemblages from the Illinois and Appalachian basins, USA.
【24h】

Linking paleobiological patterns across geographic scales: An example using Upper Mississippian fossil assemblages from the Illinois and Appalachian basins, USA.

机译:在整个地理尺度上联系古生物学模式:以来自美国伊利诺伊州和阿巴拉契亚盆地的上密西西比州化石组合为例。

获取原文
获取原文并翻译 | 示例

摘要

A fundamental goal of evolutionary paleobiology is to understand how the composition, structure, and diversity of biotic assemblages have varied through space and time, in response to physical and/or biological perturbations. Historically, research on this topic has focused on reconstructing and understanding global biotic patterns throughout the Phanerozoic. This research program has greatly improved our understanding of the global history of marine biodiversity and helped to identify intervals of major biotic turnover throughout the Phanerozoic Eon. However, global level analyses mask important variability in the timing or magnitude of biotic change among regions or habitats and preclude an understanding of the processes that control faunal dynamics at regional and local levels. Work that integrates biotic patterns across spatial scales is needed to better understand the processes that combine to drive long-term ecological and evolutionary trends.;Here, I analyze regional patterns of marine taxonomic and ecologic diversity, turnover, and ecosystem structure across the onset the Late Paleozoic ice age (LPIA), using data that were collected within a highly resolved stratigraphic framework from the Illinois and Appalachian basins. In Chapter 2, I explore how global patterns of biotic turnover are expressed in the structure and stability of regional biotic gradients from the Illinois Basin during the LPIA---an interval noted for low global rates of faunal turnover. Gradient analyses reveal a marked shift in the structure of biotic gradients across the onset of the LPIA: in the pre-LPIA interval, depositional environments are clearly distinguished by ordination analyses and are dominated by distinct associations of taxa with modest habitat ranges. However, during the LPIA interval depositional environments are only weakly differentiated by ordination and are dominated by similar associations of taxa that had broad habitat ranges. Comparisons reveal that the structure of successive LPIA biotic gradients is nearly identical. Our results are consistent with findings from global level studies, which indicate that broadly adapted taxa (eurytopes) increased in importance following the start of the LPIA. However, unlike the global level, the regional increase in eurytopy was not linked to the extinction of narrowly adapted taxa in response to climate change. Instead, eurytopy increased as the geometry of the Illinois Basin shifted from a flat carbonate ramp, comprised of shallower water, higher stress environments in the pre-LPIA interval, to a steeper ramp comprised of deeper water, more stable habitats in the LPIA interval. Because eurytopic taxa tend to be extinction resistant and have lower rates of turnover their increased importance in late Paleozoic assemblages likely drove: (1) a previously documented pattern of decrease in regional-level turnover during the late Paleozoic and (2) a perceived pattern of greater persistence in late versus early Paleozoic biotic gradients.;In Chapter 3, I focus on regional taxonomic richness and compare regional diversity trends for the Illinois Basin to global patterns that have been reported previously in the literature. Sample standardized estimates of regional taxonomic diversity and guild diversity remain nearly constant across the onset of the LPIA, despite a documented 28% decline in global diversity. The transition to the LPIA is also associated with very low levels of turnover: 76% to 92% of taxa persist from pre-LPIA sequences into the ice age interval. The onset of glacially driven high amplitude eustasy failed to affect significantly levels of regional diversity and faunal turnover during the LPIA interval. These results suggest that: (1) global and regional diversity patterns were decoupled across the onset of the LPIA and the timing or magnitude of extinction may have varied geographically across the globe; and (2) the major transition to the LPIA and associated high amplitude glacio-eustasy failed to strongly influence levels of regional diversity and turnover in the Illinois Basin. Thus, faunal persistence, not diversification or extinction, appears to be the normal biotic response to glacio-eustasy in the region, during the LPIA interval.;Chapter 4 provides the first study of its kind to compare geographic and temporal patterns of taxonomic richness, turnover, faunal composition, and ecosystem structure within and between correlative sequences in two separate depositional basins. This chapter builds upon the results displayed in chapters 2 and 3 by providing an important and comparable dataset from the Appalachian Basin, against which Illinois Basin faunal patterns can be compared. Therefore, this chapter makes a significant first step toward understanding the meaning of global LPIA biotic curves by resolving spatial complexity in faunal patterns between regions. Results from rarefaction and faunal turnover analyses indicate that taxonomic diversity, community structure, and faunal turnover did not vary significantly with geography, within or between depositional sequences. I suggest that interregional phenomena, including open connectivity between basins and the presence of similar environmental settings in each region, allowed for the establishment of comparable faunas in each basin; in turn these biotas responded in parallel ways to eustatic fluctuations between sequences. Following my discussion, I outline a research agenda for future regional studies that I believe will enrich the understanding of the biotic consequences of the LPIA and the meaning of LPIA global diversity data.
机译:进化古生物学的基本目标是了解生物集合体的组成,结构和多样性如何随时间和空间而变化,以响应物理和/或生物扰动。从历史上看,对该主题的研究一直集中在重建和理解整个古生代的全球生物模式。这项研究计划极大地增进了我们对全球海洋生物多样性历史的理解,并帮助确定了整个生代古生物中主要生物更新的间隔。但是,全球水平的分析掩盖了区域或生境之间生物变化的时机或幅度的重要变化,并妨碍了对控制区域和地方水平动物动态的过程的理解。需要更好地了解跨空间尺度上的生物模式的工作,以更好地理解相结合的过程,以驱动长期的生态和进化趋势。在这里,我分析了海洋生物分类和生态多样性,周转和生态系统结构的区域模式。晚古生代冰期(LPIA),使用的是在伊利诺伊州和阿巴拉契亚盆地高度解析的地层框架内收集的数据。在第2章中,我探讨了LPIA期间伊利诺伊盆地的生物多样性梯度的结构和稳定性中如何表达生物多样性的总体模式-该间隔是全球动物更新率较低的区间。梯度分析揭示了整个LPIA发作期间生物梯度的结构发生了明显变化:在LPIA之前的时间间隔内,沉积环境可以通过排序分析清楚地区分,并且主要受分类单元与适度生境范围的明显关联所支配。但是,在LPIA间隔期间,沉积环境只能通过排序来区分,而以栖息地范围很广的相似的生物分类群为主导。比较表明,连续的LPIA生物梯度的结构几乎相同。我们的结果与全球水平研究的结果一致,该研究表明,随着LPIA的启动,广泛适用的分类单元(eurytopes)的重要性增加。但是,与全球不同,欧洲流行性肥胖的区域性增长与应对气候变化的适应性差的分类单元的灭绝没有关系。取而代之的是,随着伊利诺伊盆地的几何形状从平缓的碳酸盐岩坡道(LPIA之前的间隔由浅水,较高的应力环境组成)向陡峭的坡度(由深水组成的,LPIA间隔中的栖息地更稳定)转变,其奥氏体增多。由于eurytopic类群趋向于灭绝并具有较低的周转率,因此它们在晚期古生代组合中的重要性日益增加,这可能导致:(1)先前有记载的古生代后期区域水平周转率下降的模式,以及(2)在第3章中,我重点讨论了区域生物分类学的丰富性,并将伊利诺伊盆地的区域多样性趋势与文献中先前报道的全球格局进行了比较。尽管有文献记载全球多样性下降了28%,但在LPIA成立之初,区域分类学多样性和行会多样性的标准化样本估计值几乎保持不变。向LPIA的过渡还与很低的周转率相关:从LPIA之前的序列到冰河期间隔,仍有76%至92%的分类单元。在LPIA间隔期间,冰川驱动的高振幅摇头丸的发作未能显着影响区域多样性和动物区系更新的水平。这些结果表明:(1)全球和区域多样性格局在LPIA爆发之初就脱钩了,并且灭绝的时间或规模在全球各地可能有所不同; (2)向LPIA的主要过渡以及相关的高振幅冰川洋流未能强烈影响伊利诺伊盆地的区域多样性和周转水平。因此,在LPIA间隔期间,动物区系的持久性而非多样性或灭绝似乎是该地区对冰河-狂喜的正常生物响应。;第4章提供了同类研究中的第一项,以比较分类学丰富度的地理和时间模式,两个独立沉积盆地内相关序列之内和之间的周转,动物组成和生态系统结构。本章以第2章和第3章显示的结果为基础,提供了来自阿巴拉契亚盆地的重要且可比较的数据集,可以将其与伊利诺伊盆地的动物区系进行比较。因此,本章通过解决区域之间动物区系的空间复杂性,朝着理解全球LPIA生物曲线的意义迈出了重要的第一步。稀疏性和动物群更新分析的结果表明,分类学上的多样性沉积序列内或沉积序列之间,地理结构,群落结构和动物更新没有明显变化。我建议,区域间的现象,包括流域之间的开放连通性以及每个区域都存在类似的环境,应允许在每个流域建立可比的动物群。反过来,这些生物群以并行的方式对序列之间的欣快波动做出反应。在讨论之后,我概述了未来区域研究的研究议程,我相信这将丰富对LPIA的生物后果以及LPIA全球多样性数据含义的理解。

著录项

  • 作者

    Bonelli, James R., Jr.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Geology.;Paleontology.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;古生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号