首页> 外文学位 >From high-level tasks to low-level motions: Motion planning for high-dimensional nonlinear hybrid robotic systems.
【24h】

From high-level tasks to low-level motions: Motion planning for high-dimensional nonlinear hybrid robotic systems.

机译:从高级任务到低级运动:高维非线性混合机器人系统的运动计划。

获取原文
获取原文并翻译 | 示例

摘要

A significant challenge of autonomous robotics in transportation, exploration, and search-and-rescue missions lies in the area of motion planning. The overall objective is to enable robots to automatically plan the low-level motions needed to accomplish assigned high-level tasks.;Toward this goal, this thesis proposes a novel multi-layered approach, termed Synergic Combination of Layers of Planning (SyCLoP), that synergically combines high-level discrete planning and low-level motion planning. High-level discrete planning, which draws from research in AI and logic, guides low-level motion planning during the search for a solution. Information gathered during the search is in turn fed back from the low-level to the high-level layer in order to improve the high-level plan in the next iteration. In this way, high-level plans become increasingly useful in guiding the low-level motion planner toward a solution.;This synergic combination of high-level discrete planning and low-level motion planning allows SyCLoP to solve motion-planning problems with respect to rich models of the robot and the physical world. This facilitates the design of feedback controllers that enable the robot to execute in the physical world solutions obtained in simulation.;In particular, SyCLoP effectively solves challenging motion-planning problems that incorporate robot dynamics, physics-based simulations, and hybrid systems. Hybrid systems move beyond continuous models by employing discrete logic to instantaneously modify the underlying robot dynamics to respond to mishaps or unanticipated changes in the environment. Experiments in this thesis show that SyCLoP obtains significant computational speedup of one to two orders of magnitude when compared to state-of-the-art motion planners. In addition to planning motions that allow the robot to reach a desired destination while avoiding collisions, SyCLoP can take into account high-level tasks specified using the expressiveness of linear temporal logic (LTL). LTL allows for complex specifications, such as sequencing, coverage, and other combinations of temporal objectives.;Going beyond motion planning, SyCLoP also provides a useful framework for discovering violations of safety properties in hybrid systems.
机译:在运输,勘探和搜索与救援任务中,自主机器人技术面临的重大挑战在于运动计划领域。总体目标是使机器人能够自动计划完成分配的高级任务所需的低级运动。针对这一目标,本文提出了一种新颖的多层方法,称为计划层协同组合(SyCLoP),协同地将高级离散计划和低级运动计划结合在一起。高层次的离散规划(源自AI和逻辑研究)在寻找解决方案的过程中指导低层次的运动规划。搜索过程中收集的信息又从低层反馈到高层,以便在下一次迭代中改进高层计划。通过这种方式,高层计划在引导低级运动计划者寻求解决方案方面变得越来越有用。;这种高水平离散计划和低级运动计划的协同结合使SyCLoP可以解决与运动计划有关的问题丰富的机器人模型和物理世界模型。这有助于设计使机器人能够在仿真中获得的物理世界中执行解决方案的反馈控制器;尤其是SyCLoP有效解决了具有挑战性的运动计划问题,这些问题涉及机器人动力学,基于物理的仿真和混合系统。混合系统通过采用离散逻辑来即时修改底层机器人动力学以响应环境中的不幸或意外变化,从而超越了连续模型。本文的实验表明,与最新的运动计划器相比,SyCLoP的计算速度提高了一个到两个数量级。除了计划允许机器人在避免碰撞的同时到达期望目标的动作之外,SyCLoP还可以考虑使用线性时间逻辑(LTL)的表达能力指定的高级任务。 LTL允许复杂的规范,例如排序,覆盖和时间目标的其他组合。除了运动计划,SyCLoP还提供了一个有用的框架,可用于发现混合系统中违反安全特性的情况。

著录项

  • 作者

    Plaku, Erion.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Computer Science.;Engineering Robotics.;Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号